refactor: Lint

This commit is contained in:
jstoobysmith 2024-08-02 16:52:04 -04:00
parent 9d98dc4854
commit 4a64acc2a2
3 changed files with 12 additions and 7 deletions

View file

@ -3,7 +3,8 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.Real.Basic
import Mathlib.Data.Set.Finite
import Mathlib.Data.Finset.Sort
/-!
# Index notation for a type
@ -342,7 +343,7 @@ lemma getDual_neq_self (i : l.contrSubtype) : i ≠ l.getDual i := by
indices. -/
def HasNoContr : Prop := ∀ i, l.NoContr i
instance (h : l.HasNoContr) : IsEmpty l.contrSubtype := by
lemma hasNoContr_is_empty (h : l.HasNoContr) : IsEmpty l.contrSubtype := by
rw [_root_.isEmpty_iff]
intro a
exact h a.1 a.1 (fun _ => a.2 (h a.1)) rfl

View file

@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Basic
import HepLean.SpaceTime.LorentzTensor.Basic
/-!
# Index lists with color conditions
@ -42,7 +43,7 @@ instance : Coe (IndexListColor 𝓒) (IndexList 𝓒.Color) := ⟨fun x => x.val
lemma indexListColorProp_of_hasNoContr {s : IndexList 𝓒.Color} (h : s.HasNoContr) :
IndexListColorProp 𝓒 s := by
simp [IndexListColorProp]
haveI : IsEmpty (s.contrSubtype) := s.instIsEmptyContrSubtypeOfHasNoContr h
haveI : IsEmpty (s.contrSubtype) := s.hasNoContr_is_empty h
simp
/-!
@ -163,6 +164,8 @@ def rel (s1 s2 : IndexListColor 𝓒) : Prop :=
-/
/-- Appending two `IndexListColor` whose correpsonding appended index list
satisfies `IndexListColorProp`. -/
def append (s1 s2 : IndexListColor 𝓒) (h : IndexListColorProp 𝓒 (s1.1 ++ s2.1)) :
IndexListColor 𝓒 := ⟨s1.1 ++ s2.1, h⟩

View file

@ -24,21 +24,22 @@ variable {d : } {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [
variable [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color]
/-- The structure an tensor with a index specification e.g. `ᵘ¹ᵤ₂`. -/
structure TensorIndex (cn : Fin n → 𝓣.Color) where
/-- The underlying tensor. -/
tensor : 𝓣.Tensor cn
/-- The list of indices. -/
index : IndexListColor 𝓣.toTensorColor
/-- The number of indices matches the number of vector spaces in the tensor. -/
nat_eq : n = index.1.length
/-- The equivalence classes of colors of the tensor and the index list agree. -/
quot_eq : 𝓣.colorQuot ∘ index.1.colorMap ∘ Fin.cast nat_eq = 𝓣.colorQuot ∘ cn
namespace TensorIndex
variable {𝓣 : TensorStructure R} [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color]
variable {n m : } {cn : Fin n → 𝓣.Color} {cm : Fin m → 𝓣.Color} (T : TensorIndex 𝓣 cn)
section noncomputable
def smul (r : R) : TensorIndex 𝓣 cn := ⟨r • T.tensor, T.index, T.nat_eq, T.quot_eq⟩
end
end TensorIndex