refactor: Uncontracted List organization
This commit is contained in:
parent
27cbb03275
commit
4ca4eac8c5
3 changed files with 182 additions and 157 deletions
|
@ -219,6 +219,103 @@ lemma uncontractedList_length_eq_card (c : WickContraction n) :
|
|||
rw [uncontractedList_eq_sort]
|
||||
exact Finset.length_sort fun x1 x2 => x1 ≤ x2
|
||||
|
||||
|
||||
lemma filter_uncontractedList (c : WickContraction n) (p : Fin n → Prop) [DecidablePred p] :
|
||||
(c.uncontractedList.filter p) = (c.uncontracted.filter p).sort (· ≤ ·) := by
|
||||
have h1 : (c.uncontractedList.filter p).Sorted (· ≤ ·) := by
|
||||
apply List.Sorted.filter
|
||||
exact uncontractedList_sorted c
|
||||
have h2 : (c.uncontractedList.filter p).Nodup := by
|
||||
refine List.Nodup.filter _ ?_
|
||||
exact uncontractedList_nodup c
|
||||
have h3 : (c.uncontractedList.filter p).toFinset = (c.uncontracted.filter p) := by
|
||||
ext a
|
||||
simp only [List.toFinset_filter, decide_eq_true_eq, Finset.mem_filter, List.mem_toFinset,
|
||||
and_congr_left_iff]
|
||||
rw [uncontractedList_mem_iff]
|
||||
simp
|
||||
have hx := (List.toFinset_sort (· ≤ ·) h2).mpr h1
|
||||
rw [← hx, h3]
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## uncontractedIndexEquiv
|
||||
|
||||
-/
|
||||
|
||||
|
||||
/-- The equivalence between the positions of `c.uncontractedList` i.e. elements of
|
||||
`Fin (c.uncontractedList).length` and the finite set `c.uncontracted` considered as a finite type.
|
||||
-/
|
||||
def uncontractedIndexEquiv (c : WickContraction n) :
|
||||
Fin (c.uncontractedList).length ≃ c.uncontracted where
|
||||
toFun i := ⟨c.uncontractedList.get i, c.uncontractedList_get_mem_uncontracted i⟩
|
||||
invFun i := ⟨List.indexOf i.1 c.uncontractedList,
|
||||
List.indexOf_lt_length.mpr ((c.uncontractedList_mem_iff i.1).mpr i.2)⟩
|
||||
left_inv i := by
|
||||
ext
|
||||
exact List.get_indexOf (uncontractedList_nodup c) _
|
||||
right_inv i := by
|
||||
ext
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma uncontractedList_getElem_uncontractedIndexEquiv_symm (k : c.uncontracted) :
|
||||
c.uncontractedList[(c.uncontractedIndexEquiv.symm k).val] = k := by
|
||||
simp [uncontractedIndexEquiv]
|
||||
|
||||
lemma uncontractedIndexEquiv_symm_eq_filter_length (k : c.uncontracted) :
|
||||
(c.uncontractedIndexEquiv.symm k).val =
|
||||
(List.filter (fun i => i < k.val) c.uncontractedList).length := by
|
||||
simp only [uncontractedIndexEquiv, List.get_eq_getElem, Equiv.coe_fn_symm_mk]
|
||||
rw [fin_list_sorted_indexOf_mem]
|
||||
· simp
|
||||
· exact uncontractedList_sorted c
|
||||
· rw [uncontractedList_mem_iff]
|
||||
exact k.2
|
||||
|
||||
lemma take_uncontractedIndexEquiv_symm (k : c.uncontracted) :
|
||||
c.uncontractedList.take (c.uncontractedIndexEquiv.symm k).val =
|
||||
c.uncontractedList.filter (fun i => i < k.val) := by
|
||||
have hl := fin_list_sorted_split c.uncontractedList (uncontractedList_sorted c) k.val
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rw [hl]
|
||||
rw [uncontractedIndexEquiv_symm_eq_filter_length]
|
||||
simp
|
||||
|
||||
/-!
|
||||
|
||||
## uncontractedStatesEquiv
|
||||
|
||||
-/
|
||||
|
||||
/-- The equivalence between the type `Option c.uncontracted` for `WickContraction φs.length` and
|
||||
`Option (Fin (c.uncontractedList.map φs.get).length)`, that is optional positions of
|
||||
`c.uncontractedList.map φs.get` induced by `uncontractedIndexEquiv`. -/
|
||||
def uncontractedStatesEquiv (φs : List 𝓕.States) (c : WickContraction φs.length) :
|
||||
Option c.uncontracted ≃ Option (Fin (c.uncontractedList.map φs.get).length) :=
|
||||
Equiv.optionCongr (c.uncontractedIndexEquiv.symm.trans (finCongr (by simp)))
|
||||
|
||||
@[simp]
|
||||
lemma uncontractedStatesEquiv_none (φs : List 𝓕.States) (c : WickContraction φs.length) :
|
||||
(uncontractedStatesEquiv φs c).toFun none = none := by
|
||||
simp [uncontractedStatesEquiv]
|
||||
|
||||
lemma uncontractedStatesEquiv_list_sum [AddCommMonoid α] (φs : List 𝓕.States)
|
||||
(c : WickContraction φs.length) (f : Option (Fin (c.uncontractedList.map φs.get).length) → α) :
|
||||
∑ (i : Option (Fin (c.uncontractedList.map φs.get).length)), f i =
|
||||
∑ (i : Option c.uncontracted), f (c.uncontractedStatesEquiv φs i) := by
|
||||
rw [(c.uncontractedStatesEquiv φs).sum_comp]
|
||||
|
||||
/-!
|
||||
|
||||
## Uncontracted List for extractEquiv symm none
|
||||
|
||||
-/
|
||||
|
||||
|
||||
lemma uncontractedList_succAboveEmb_sorted (c : WickContraction n) (i : Fin n.succ) :
|
||||
((List.map i.succAboveEmb c.uncontractedList)).Sorted (· ≤ ·) := by
|
||||
apply fin_list_sorted_succAboveEmb_sorted
|
||||
|
@ -230,33 +327,54 @@ lemma uncontractedList_succAboveEmb_nodup (c : WickContraction n) (i : Fin n.suc
|
|||
· exact Function.Embedding.injective i.succAboveEmb
|
||||
· exact uncontractedList_nodup c
|
||||
|
||||
lemma uncontractedList_succAboveEmb_toFinset (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.map i.succAboveEmb c.uncontractedList).toFinset =
|
||||
(Finset.map i.succAboveEmb c.uncontracted) := by
|
||||
ext a
|
||||
simp only [Fin.coe_succAboveEmb, List.mem_toFinset, List.mem_map, Finset.mem_map,
|
||||
Fin.succAboveEmb_apply]
|
||||
rw [← c.uncontractedList_toFinset]
|
||||
simp
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eq_sort(c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.map i.succAboveEmb c.uncontractedList) =
|
||||
(c.uncontracted.map i.succAboveEmb).sort (· ≤ ·) := by
|
||||
rw [← uncontractedList_succAboveEmb_toFinset]
|
||||
symm
|
||||
refine (List.toFinset_sort (α := Fin n.succ) (· ≤ ·) ?_).mpr ?_
|
||||
lemma uncontractedList_succAbove_orderedInsert_nodup (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).Nodup := by
|
||||
have h1 : (List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).Perm
|
||||
(i :: List.map i.succAboveEmb c.uncontractedList) := by
|
||||
exact List.perm_orderedInsert (fun x1 x2 => x1 ≤ x2) i _
|
||||
apply List.Perm.nodup h1.symm
|
||||
simp only [Nat.succ_eq_add_one, List.nodup_cons, List.mem_map, not_exists,
|
||||
not_and]
|
||||
apply And.intro
|
||||
· intro x _
|
||||
exact Fin.succAbove_ne i x
|
||||
· exact uncontractedList_succAboveEmb_nodup c i
|
||||
· exact uncontractedList_succAboveEmb_sorted c i
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eraseIdx_sorted (c : WickContraction n) (i : Fin n.succ)
|
||||
(k: ℕ) : ((List.map i.succAboveEmb c.uncontractedList).eraseIdx k).Sorted (· ≤ ·) := by
|
||||
apply HepLean.List.eraseIdx_sorted
|
||||
lemma uncontractedList_succAbove_orderedInsert_sorted (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i
|
||||
(List.map i.succAboveEmb c.uncontractedList)).Sorted (· ≤ ·) := by
|
||||
refine List.Sorted.orderedInsert i (List.map (⇑i.succAboveEmb) c.uncontractedList) ?_
|
||||
exact uncontractedList_succAboveEmb_sorted c i
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eraseIdx_nodup (c : WickContraction n) (i : Fin n.succ) (k: ℕ) :
|
||||
((List.map i.succAboveEmb c.uncontractedList).eraseIdx k).Nodup := by
|
||||
refine List.Nodup.eraseIdx k ?_
|
||||
exact uncontractedList_succAboveEmb_nodup c i
|
||||
lemma uncontractedList_succAbove_orderedInsert_toFinset (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).toFinset =
|
||||
(Insert.insert i (Finset.map i.succAboveEmb c.uncontracted)) := by
|
||||
ext a
|
||||
simp only [Nat.succ_eq_add_one, Fin.coe_succAboveEmb, List.mem_toFinset, List.mem_orderedInsert,
|
||||
List.mem_map, Finset.mem_insert, Finset.mem_map, Fin.succAboveEmb_apply]
|
||||
rw [← uncontractedList_toFinset]
|
||||
simp
|
||||
|
||||
lemma uncontractedList_succAbove_orderedInsert_eq_sort (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)) =
|
||||
(Insert.insert i (Finset.map i.succAboveEmb c.uncontracted)).sort (· ≤ ·) := by
|
||||
rw [← uncontractedList_succAbove_orderedInsert_toFinset]
|
||||
symm
|
||||
refine (List.toFinset_sort (α := Fin n.succ) (· ≤ ·) ?_).mpr ?_
|
||||
· exact uncontractedList_succAbove_orderedInsert_nodup c i
|
||||
· exact uncontractedList_succAbove_orderedInsert_sorted c i
|
||||
|
||||
lemma uncontractedList_extractEquiv_symm_none (c : WickContraction n) (i : Fin n.succ) :
|
||||
((extractEquiv i).symm ⟨c, none⟩).uncontractedList =
|
||||
List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList) := by
|
||||
rw [uncontractedList_eq_sort, extractEquiv_symm_none_uncontracted]
|
||||
rw [uncontractedList_succAbove_orderedInsert_eq_sort]
|
||||
|
||||
/-!
|
||||
|
||||
## Uncontracted List for extractEquiv symm some
|
||||
|
||||
-/
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eraseIdx_toFinset (c : WickContraction n) (i : Fin n.succ)
|
||||
(k : ℕ) (hk : k < c.uncontractedList.length) :
|
||||
|
@ -286,6 +404,16 @@ lemma uncontractedList_succAboveEmb_eraseIdx_toFinset (c : WickContraction n) (i
|
|||
simp_all [uncontractedList]
|
||||
exact uncontractedList_succAboveEmb_nodup c i
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eraseIdx_sorted (c : WickContraction n) (i : Fin n.succ)
|
||||
(k: ℕ) : ((List.map i.succAboveEmb c.uncontractedList).eraseIdx k).Sorted (· ≤ ·) := by
|
||||
apply HepLean.List.eraseIdx_sorted
|
||||
exact uncontractedList_succAboveEmb_sorted c i
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eraseIdx_nodup (c : WickContraction n) (i : Fin n.succ) (k: ℕ) :
|
||||
((List.map i.succAboveEmb c.uncontractedList).eraseIdx k).Nodup := by
|
||||
refine List.Nodup.eraseIdx k ?_
|
||||
exact uncontractedList_succAboveEmb_nodup c i
|
||||
|
||||
lemma uncontractedList_succAboveEmb_eraseIdx_eq_sort (c : WickContraction n) (i : Fin n.succ)
|
||||
(k : ℕ) (hk : k < c.uncontractedList.length) :
|
||||
((List.map i.succAboveEmb c.uncontractedList).eraseIdx k) =
|
||||
|
@ -297,48 +425,34 @@ lemma uncontractedList_succAboveEmb_eraseIdx_eq_sort (c : WickContraction n) (i
|
|||
· exact uncontractedList_succAboveEmb_eraseIdx_nodup c i k
|
||||
· exact uncontractedList_succAboveEmb_eraseIdx_sorted c i k
|
||||
|
||||
lemma uncontractedList_succAbove_orderedInsert_sorted (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i
|
||||
(List.map i.succAboveEmb c.uncontractedList)).Sorted (· ≤ ·) := by
|
||||
refine List.Sorted.orderedInsert i (List.map (⇑i.succAboveEmb) c.uncontractedList) ?_
|
||||
exact uncontractedList_succAboveEmb_sorted c i
|
||||
|
||||
lemma uncontractedList_succAbove_orderedInsert_nodup (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).Nodup := by
|
||||
have h1 : (List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).Perm
|
||||
(i :: List.map i.succAboveEmb c.uncontractedList) := by
|
||||
exact List.perm_orderedInsert (fun x1 x2 => x1 ≤ x2) i _
|
||||
apply List.Perm.nodup h1.symm
|
||||
simp only [Nat.succ_eq_add_one, List.nodup_cons, List.mem_map, not_exists,
|
||||
not_and]
|
||||
apply And.intro
|
||||
· intro x _
|
||||
exact Fin.succAbove_ne i x
|
||||
· exact uncontractedList_succAboveEmb_nodup c i
|
||||
|
||||
lemma uncontractedList_succAbove_orderedInsert_toFinset (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)).toFinset =
|
||||
(Insert.insert i (Finset.map i.succAboveEmb c.uncontracted)) := by
|
||||
lemma uncontractedList_extractEquiv_symm_some (c : WickContraction n) (i : Fin n.succ)
|
||||
(k : c.uncontracted) : ((extractEquiv i).symm ⟨c, some k⟩).uncontractedList =
|
||||
((c.uncontractedList).map i.succAboveEmb).eraseIdx (c.uncontractedIndexEquiv.symm k) := by
|
||||
rw [uncontractedList_eq_sort]
|
||||
rw [uncontractedList_succAboveEmb_eraseIdx_eq_sort]
|
||||
swap
|
||||
simp only [Fin.is_lt]
|
||||
congr
|
||||
simp only [Nat.succ_eq_add_one, extractEquiv, Equiv.coe_fn_symm_mk,
|
||||
uncontractedList_getElem_uncontractedIndexEquiv_symm, Fin.succAboveEmb_apply]
|
||||
rw [insert_some_uncontracted]
|
||||
ext a
|
||||
simp only [Nat.succ_eq_add_one, Fin.coe_succAboveEmb, List.mem_toFinset, List.mem_orderedInsert,
|
||||
List.mem_map, Finset.mem_insert, Finset.mem_map, Fin.succAboveEmb_apply]
|
||||
rw [← uncontractedList_toFinset]
|
||||
simp
|
||||
|
||||
lemma uncontractedList_succAbove_orderedInsert_eq_sort (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList)) =
|
||||
(Insert.insert i (Finset.map i.succAboveEmb c.uncontracted)).sort (· ≤ ·) := by
|
||||
rw [← uncontractedList_succAbove_orderedInsert_toFinset]
|
||||
symm
|
||||
refine (List.toFinset_sort (α := Fin n.succ) (· ≤ ·) ?_).mpr ?_
|
||||
· exact uncontractedList_succAbove_orderedInsert_nodup c i
|
||||
· exact uncontractedList_succAbove_orderedInsert_sorted c i
|
||||
lemma uncontractedList_succAboveEmb_toFinset (c : WickContraction n) (i : Fin n.succ) :
|
||||
(List.map i.succAboveEmb c.uncontractedList).toFinset =
|
||||
(Finset.map i.succAboveEmb c.uncontracted) := by
|
||||
ext a
|
||||
simp only [Fin.coe_succAboveEmb, List.mem_toFinset, List.mem_map, Finset.mem_map,
|
||||
Fin.succAboveEmb_apply]
|
||||
rw [← c.uncontractedList_toFinset]
|
||||
simp
|
||||
|
||||
lemma uncontractedList_extractEquiv_symm_none (c : WickContraction n) (i : Fin n.succ) :
|
||||
((extractEquiv i).symm ⟨c, none⟩).uncontractedList =
|
||||
List.orderedInsert (· ≤ ·) i (List.map i.succAboveEmb c.uncontractedList) := by
|
||||
rw [uncontractedList_eq_sort, extractEquiv_symm_none_uncontracted]
|
||||
rw [uncontractedList_succAbove_orderedInsert_eq_sort]
|
||||
/-!
|
||||
|
||||
## uncontractedListOrderPos
|
||||
|
||||
-/
|
||||
|
||||
/-- Given a Wick contraction `c : WickContraction n` and a `Fin n.succ`, the number of elements
|
||||
of `c.uncontractedList` which are less then `i`.
|
||||
|
@ -398,93 +512,4 @@ lemma orderedInsert_succAboveEmb_uncontractedList_eq_insertIdx (c : WickContract
|
|||
simp_all only [Fin.lt_def, Fin.coe_castSucc, not_lt, Fin.val_succ]
|
||||
omega
|
||||
|
||||
/-- The equivalence between the positions of `c.uncontractedList` i.e. elements of
|
||||
`Fin (c.uncontractedList).length` and the finite set `c.uncontracted` considered as a finite type.
|
||||
-/
|
||||
def uncontractedFinEquiv (c : WickContraction n) :
|
||||
Fin (c.uncontractedList).length ≃ c.uncontracted where
|
||||
toFun i := ⟨c.uncontractedList.get i, c.uncontractedList_get_mem_uncontracted i⟩
|
||||
invFun i := ⟨List.indexOf i.1 c.uncontractedList,
|
||||
List.indexOf_lt_length.mpr ((c.uncontractedList_mem_iff i.1).mpr i.2)⟩
|
||||
left_inv i := by
|
||||
ext
|
||||
exact List.get_indexOf (uncontractedList_nodup c) _
|
||||
right_inv i := by
|
||||
ext
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma uncontractedList_getElem_uncontractedFinEquiv_symm (k : c.uncontracted) :
|
||||
c.uncontractedList[(c.uncontractedFinEquiv.symm k).val] = k := by
|
||||
simp [uncontractedFinEquiv]
|
||||
|
||||
lemma uncontractedFinEquiv_symm_eq_filter_length (k : c.uncontracted) :
|
||||
(c.uncontractedFinEquiv.symm k).val =
|
||||
(List.filter (fun i => i < k.val) c.uncontractedList).length := by
|
||||
simp only [uncontractedFinEquiv, List.get_eq_getElem, Equiv.coe_fn_symm_mk]
|
||||
rw [fin_list_sorted_indexOf_mem]
|
||||
· simp
|
||||
· exact uncontractedList_sorted c
|
||||
· rw [uncontractedList_mem_iff]
|
||||
exact k.2
|
||||
|
||||
lemma take_uncontractedFinEquiv_symm (k : c.uncontracted) :
|
||||
c.uncontractedList.take (c.uncontractedFinEquiv.symm k).val =
|
||||
c.uncontractedList.filter (fun i => i < k.val) := by
|
||||
have hl := fin_list_sorted_split c.uncontractedList (uncontractedList_sorted c) k.val
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rw [hl]
|
||||
rw [uncontractedFinEquiv_symm_eq_filter_length]
|
||||
simp
|
||||
|
||||
/-- The equivalence between the type `Option c.uncontracted` for `WickContraction φs.length` and
|
||||
`Option (Fin (c.uncontractedList.map φs.get).length)`, that is optional positions of
|
||||
`c.uncontractedList.map φs.get` induced by `uncontractedFinEquiv`. -/
|
||||
def uncontractedStatesEquiv (φs : List 𝓕.States) (c : WickContraction φs.length) :
|
||||
Option c.uncontracted ≃ Option (Fin (c.uncontractedList.map φs.get).length) :=
|
||||
Equiv.optionCongr (c.uncontractedFinEquiv.symm.trans (finCongr (by simp)))
|
||||
|
||||
@[simp]
|
||||
lemma uncontractedStatesEquiv_none (φs : List 𝓕.States) (c : WickContraction φs.length) :
|
||||
(uncontractedStatesEquiv φs c).toFun none = none := by
|
||||
simp [uncontractedStatesEquiv]
|
||||
|
||||
lemma uncontractedStatesEquiv_list_sum [AddCommMonoid α] (φs : List 𝓕.States)
|
||||
(c : WickContraction φs.length) (f : Option (Fin (c.uncontractedList.map φs.get).length) → α) :
|
||||
∑ (i : Option (Fin (c.uncontractedList.map φs.get).length)), f i =
|
||||
∑ (i : Option c.uncontracted), f (c.uncontractedStatesEquiv φs i) := by
|
||||
rw [(c.uncontractedStatesEquiv φs).sum_comp]
|
||||
|
||||
lemma uncontractedList_extractEquiv_symm_some (c : WickContraction n) (i : Fin n.succ)
|
||||
(k : c.uncontracted) : ((extractEquiv i).symm ⟨c, some k⟩).uncontractedList =
|
||||
((c.uncontractedList).map i.succAboveEmb).eraseIdx (c.uncontractedFinEquiv.symm k) := by
|
||||
rw [uncontractedList_eq_sort]
|
||||
rw [uncontractedList_succAboveEmb_eraseIdx_eq_sort]
|
||||
swap
|
||||
simp only [Fin.is_lt]
|
||||
congr
|
||||
simp only [Nat.succ_eq_add_one, extractEquiv, Equiv.coe_fn_symm_mk,
|
||||
uncontractedList_getElem_uncontractedFinEquiv_symm, Fin.succAboveEmb_apply]
|
||||
rw [insert_some_uncontracted]
|
||||
ext a
|
||||
simp
|
||||
|
||||
lemma filter_uncontractedList (c : WickContraction n) (p : Fin n → Prop) [DecidablePred p] :
|
||||
(c.uncontractedList.filter p) = (c.uncontracted.filter p).sort (· ≤ ·) := by
|
||||
have h1 : (c.uncontractedList.filter p).Sorted (· ≤ ·) := by
|
||||
apply List.Sorted.filter
|
||||
exact uncontractedList_sorted c
|
||||
have h2 : (c.uncontractedList.filter p).Nodup := by
|
||||
refine List.Nodup.filter _ ?_
|
||||
exact uncontractedList_nodup c
|
||||
have h3 : (c.uncontractedList.filter p).toFinset = (c.uncontracted.filter p) := by
|
||||
ext a
|
||||
simp only [List.toFinset_filter, decide_eq_true_eq, Finset.mem_filter, List.mem_toFinset,
|
||||
and_congr_left_iff]
|
||||
rw [uncontractedList_mem_iff]
|
||||
simp
|
||||
have hx := (List.toFinset_sort (· ≤ ·) h2).mpr h1
|
||||
rw [← hx, h3]
|
||||
|
||||
end WickContraction
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue