refactor: Organize supercommute for CrAnAlgebra
This commit is contained in:
parent
2fcafb1796
commit
509d536577
4 changed files with 228 additions and 207 deletions
|
@ -153,7 +153,7 @@ lemma normalOrder_superCommute_create_annihilate (φc φa : 𝓕.CrAnStates)
|
|||
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
normalOrder (a * superCommute (ofCrAnState φc) (ofCrAnState φa) * b) = 0 := by
|
||||
rw [superCommute_ofCrAnState]
|
||||
rw [superCommute_ofCrAnState_ofCrAnState]
|
||||
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [mul_sub, sub_mul, map_sub, ← smul_mul_assoc]
|
||||
rw [← mul_assoc, ← mul_assoc]
|
||||
|
@ -166,7 +166,7 @@ lemma normalOrder_superCommute_annihilate_create (φc φa : 𝓕.CrAnStates)
|
|||
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
normalOrder (a * superCommute (ofCrAnState φa) (ofCrAnState φc) * b) = 0 := by
|
||||
rw [superCommute_ofCrAnState_symm]
|
||||
rw [superCommute_ofCrAnState_ofCrAnState_symm]
|
||||
simp only [instCommGroup.eq_1, neg_smul, mul_neg, Algebra.mul_smul_comm, neg_mul,
|
||||
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
|
||||
apply Or.inr
|
||||
|
@ -298,7 +298,7 @@ lemma normalOrder_superCommute_ofCrAnList_create_create_ofCrAnList
|
|||
normalOrderSign (φs ++ φc' :: φc :: φs') •
|
||||
(ofCrAnList (createFilter φs) * superCommute (ofCrAnState φc) (ofCrAnState φc') *
|
||||
ofCrAnList (createFilter φs') * ofCrAnList (annihilateFilter (φs ++ φs'))) := by
|
||||
rw [superCommute_ofCrAnState]
|
||||
rw [superCommute_ofCrAnState_ofCrAnState]
|
||||
rw [mul_sub, sub_mul, map_sub]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
|
@ -372,7 +372,7 @@ lemma normalOrder_superCommute_ofCrAnList_annihilate_annihilate_ofCrAnList
|
|||
(ofCrAnList (createFilter (φs ++ φs'))
|
||||
* ofCrAnList (annihilateFilter φs) * superCommute (ofCrAnState φa) (ofCrAnState φa')
|
||||
* ofCrAnList (annihilateFilter φs')) := by
|
||||
rw [superCommute_ofCrAnState]
|
||||
rw [superCommute_ofCrAnState_ofCrAnState]
|
||||
rw [mul_sub, sub_mul, map_sub]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
|
@ -495,7 +495,7 @@ lemma ofCrAnList_superCommute_normalOrder_ofCrAnList (φs φs' : List 𝓕.CrAnS
|
|||
⟨ofCrAnList φs, normalOrder (ofCrAnList φs')⟩ₛca =
|
||||
ofCrAnList φs * normalOrder (ofCrAnList φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • normalOrder (ofCrAnList φs') * ofCrAnList φs := by
|
||||
simp [normalOrder_ofCrAnList, map_smul, superCommute_ofCrAnList, ofCrAnList_append,
|
||||
simp [normalOrder_ofCrAnList, map_smul, superCommute_ofCrAnList_ofCrAnList, ofCrAnList_append,
|
||||
smul_sub, smul_smul, mul_comm]
|
||||
|
||||
lemma ofCrAnList_superCommute_normalOrder_ofStateList (φs : List 𝓕.CrAnStates)
|
||||
|
|
|
@ -37,11 +37,27 @@ noncomputable def superCommute : 𝓕.CrAnAlgebra →ₗ[ℂ] 𝓕.CrAnAlgebra
|
|||
whilst for two fermionic operators this corresponds to the anti-commutator. -/
|
||||
scoped[FieldSpecification.CrAnAlgebra] notation "⟨" φs "," φs' "⟩ₛca" => superCommute φs φs'
|
||||
|
||||
lemma superCommute_ofCrAnList (φs φs' : List 𝓕.CrAnStates) : ⟨ofCrAnList φs, ofCrAnList φs'⟩ₛca =
|
||||
/-!
|
||||
|
||||
## The super commutor of different types of elements
|
||||
|
||||
-/
|
||||
|
||||
lemma superCommute_ofCrAnList_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
|
||||
⟨ofCrAnList φs, ofCrAnList φs'⟩ₛca =
|
||||
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs) := by
|
||||
rw [← ofListBasis_eq_ofList, ← ofListBasis_eq_ofList]
|
||||
simp only [superCommute, Basis.constr_basis]
|
||||
|
||||
lemma superCommute_ofCrAnState_ofCrAnState (φ φ' : 𝓕.CrAnStates) :
|
||||
⟨ofCrAnState φ, ofCrAnState φ'⟩ₛca =
|
||||
ofCrAnState φ * ofCrAnState φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofCrAnState φ' * ofCrAnState φ := by
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
||||
rw [superCommute_ofCrAnList_ofCrAnList, ofCrAnList_append]
|
||||
congr
|
||||
rw [ofCrAnList_append]
|
||||
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
|
||||
|
||||
lemma superCommute_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
|
||||
⟨ofCrAnList φcas, ofStateList φs⟩ₛca = ofCrAnList φcas * ofStateList φs -
|
||||
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofStateList φs * ofCrAnList φcas := by
|
||||
|
@ -49,7 +65,7 @@ lemma superCommute_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs :
|
|||
rw [map_sum]
|
||||
conv_lhs =>
|
||||
enter [2, x]
|
||||
rw [superCommute_ofCrAnList, CrAnSection.statistics_eq_state_statistics,
|
||||
rw [superCommute_ofCrAnList_ofCrAnList, CrAnSection.statistics_eq_state_statistics,
|
||||
ofCrAnList_append, ofCrAnList_append]
|
||||
rw [Finset.sum_sub_distrib, ← Finset.mul_sum, ← Finset.smul_sum,
|
||||
← Finset.sum_mul, ← ofStateList_sum]
|
||||
|
@ -74,16 +90,184 @@ lemma superCommute_ofState_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.Stat
|
|||
rw [← ofStateList_singleton, superCommute_ofStateList_ofStatesList, ofStateList_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommute_ofStateList_ofStates (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
lemma superCommute_ofStateList_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
⟨ofStateList φs, ofState φ⟩ₛca = ofStateList φs * ofState φ -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs := by
|
||||
rw [← ofStateList_singleton, superCommute_ofStateList_ofStatesList, ofStateList_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommute_anPart_crPart (φ φ' : 𝓕.States) :
|
||||
⟨anPart (StateAlgebra.ofState φ), crPart (StateAlgebra.ofState φ')⟩ₛca =
|
||||
anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) := by
|
||||
match φ, φ' with
|
||||
| States.negAsymp φ, _ =>
|
||||
simp
|
||||
| _, States.posAsymp φ =>
|
||||
simp only [crPart_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
|
||||
sub_self]
|
||||
| States.position φ, States.position φ' =>
|
||||
simp only [anPart_position, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.posAsymp φ, States.position φ' =>
|
||||
simp only [anPart_posAsymp, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.position φ, States.negAsymp φ' =>
|
||||
simp only [anPart_position, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp only [List.singleton_append, instCommGroup.eq_1, crAnStatistics,
|
||||
FieldStatistic.ofList_singleton, Function.comp_apply, crAnStatesToStates_prod, ←
|
||||
ofCrAnList_append]
|
||||
| States.posAsymp φ, States.negAsymp φ' =>
|
||||
simp only [anPart_posAsymp, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
lemma superCommute_crPart_anPart (φ φ' : 𝓕.States) :
|
||||
⟨crPart (StateAlgebra.ofState φ), anPart (StateAlgebra.ofState φ')⟩ₛca =
|
||||
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
anPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) := by
|
||||
match φ, φ' with
|
||||
| States.posAsymp φ, _ =>
|
||||
simp only [crPart_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
|
||||
mul_zero, sub_self]
|
||||
| _, States.negAsymp φ =>
|
||||
simp only [anPart_negAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
|
||||
sub_self]
|
||||
| States.position φ, States.position φ' =>
|
||||
simp only [crPart_position, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.position φ, States.posAsymp φ' =>
|
||||
simp only [crPart_position, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.negAsymp φ, States.position φ' =>
|
||||
simp only [crPart_negAsymp, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.negAsymp φ, States.posAsymp φ' =>
|
||||
simp only [crPart_negAsymp, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
lemma superCommute_crPart_crPart (φ φ' : 𝓕.States) :
|
||||
⟨crPart (StateAlgebra.ofState φ), crPart (StateAlgebra.ofState φ')⟩ₛca =
|
||||
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
crPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) := by
|
||||
match φ, φ' with
|
||||
| States.posAsymp φ, _ =>
|
||||
simp only [crPart_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
|
||||
mul_zero, sub_self]
|
||||
| _, States.posAsymp φ =>
|
||||
simp only [crPart_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul, sub_self]
|
||||
| States.position φ, States.position φ' =>
|
||||
simp only [crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.position φ, States.negAsymp φ' =>
|
||||
simp only [crPart_position, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.negAsymp φ, States.position φ' =>
|
||||
simp only [crPart_negAsymp, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.negAsymp φ, States.negAsymp φ' =>
|
||||
simp only [crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
lemma superCommute_anPart_anPart (φ φ' : 𝓕.States) :
|
||||
⟨anPart (StateAlgebra.ofState φ), anPart (StateAlgebra.ofState φ')⟩ₛca =
|
||||
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
anPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) := by
|
||||
match φ, φ' with
|
||||
| States.negAsymp φ, _ =>
|
||||
simp
|
||||
| _, States.negAsymp φ =>
|
||||
simp
|
||||
| States.position φ, States.position φ' =>
|
||||
simp only [anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.position φ, States.posAsymp φ' =>
|
||||
simp only [anPart_position, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.posAsymp φ, States.position φ' =>
|
||||
simp only [anPart_posAsymp, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.posAsymp φ, States.posAsymp φ' =>
|
||||
simp only [anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
|
||||
lemma superCommute_crPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
⟨crPart (StateAlgebra.ofState φ), ofStateList φs⟩ₛca =
|
||||
crPart (StateAlgebra.ofState φ) * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
|
||||
crPart (StateAlgebra.ofState φ) := by
|
||||
match φ with
|
||||
| States.negAsymp φ =>
|
||||
simp only [crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
|
||||
simp [crAnStatistics]
|
||||
| States.position φ =>
|
||||
simp only [crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
|
||||
simp [crAnStatistics]
|
||||
| States.posAsymp φ =>
|
||||
simp
|
||||
|
||||
lemma superCommute_anPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
⟨anPart (StateAlgebra.ofState φ), ofStateList φs⟩ₛca =
|
||||
anPart (StateAlgebra.ofState φ) * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
|
||||
ofStateList φs * anPart (StateAlgebra.ofState φ) := by
|
||||
match φ with
|
||||
| States.negAsymp φ =>
|
||||
simp
|
||||
| States.position φ =>
|
||||
simp only [anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
|
||||
simp [crAnStatistics]
|
||||
| States.posAsymp φ =>
|
||||
simp only [anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
|
||||
simp [crAnStatistics]
|
||||
|
||||
lemma superCommute_crPart_ofState (φ φ' : 𝓕.States) :
|
||||
⟨crPart (StateAlgebra.ofState φ), ofState φ'⟩ₛca =
|
||||
crPart (StateAlgebra.ofState φ) * ofState φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * crPart (StateAlgebra.ofState φ) := by
|
||||
rw [← ofStateList_singleton, superCommute_crPart_ofStateList]
|
||||
simp
|
||||
|
||||
lemma superCommute_anPart_ofState (φ φ' : 𝓕.States) :
|
||||
⟨anPart (StateAlgebra.ofState φ), ofState φ'⟩ₛca =
|
||||
anPart (StateAlgebra.ofState φ) * ofState φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * anPart (StateAlgebra.ofState φ) := by
|
||||
rw [← ofStateList_singleton, superCommute_anPart_ofStateList]
|
||||
simp
|
||||
|
||||
/-!
|
||||
|
||||
## Mul equal superCommute
|
||||
|
||||
Lemmas which rewrite a multiplication of two elements of the algebra as their commuted
|
||||
multiplication with a sign plus the super commutor.
|
||||
|
||||
-/
|
||||
lemma ofCrAnList_mul_ofCrAnList_eq_superCommute (φs φs' : List 𝓕.CrAnStates) :
|
||||
ofCrAnList φs * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnList φs
|
||||
+ ⟨ofCrAnList φs, ofCrAnList φs'⟩ₛca := by
|
||||
rw [superCommute_ofCrAnList]
|
||||
rw [superCommute_ofCrAnList_ofCrAnList]
|
||||
simp [ofCrAnList_append]
|
||||
|
||||
lemma ofCrAnState_mul_ofCrAnList_eq_superCommute (φ : 𝓕.CrAnStates) (φs' : List 𝓕.CrAnStates) :
|
||||
|
@ -107,132 +291,18 @@ lemma ofState_mul_ofStateList_eq_superCommute (φ : 𝓕.States) (φs' : List
|
|||
lemma ofStateList_mul_ofState_eq_superCommute (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
ofStateList φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs
|
||||
+ ⟨ofStateList φs, ofState φ⟩ₛca := by
|
||||
rw [superCommute_ofStateList_ofStates]
|
||||
rw [superCommute_ofStateList_ofState]
|
||||
simp
|
||||
|
||||
lemma superCommute_anPart_crPart (φ φ' : 𝓕.States) :
|
||||
⟨anPart (StateAlgebra.ofState φ), crPart (StateAlgebra.ofState φ')⟩ₛca =
|
||||
anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) := by
|
||||
match φ, φ' with
|
||||
| States.negAsymp φ, _ =>
|
||||
simp
|
||||
| _, States.posAsymp φ =>
|
||||
simp only [crPart_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
|
||||
sub_self]
|
||||
| States.position φ, States.position φ' =>
|
||||
simp only [anPart_position, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.posAsymp φ, States.position φ' =>
|
||||
simp only [anPart_posAsymp, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.position φ, States.negAsymp φ' =>
|
||||
simp only [anPart_position, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp only [List.singleton_append, instCommGroup.eq_1, crAnStatistics,
|
||||
FieldStatistic.ofList_singleton, Function.comp_apply, crAnStatesToStates_prod, ←
|
||||
ofCrAnList_append]
|
||||
| States.posAsymp φ, States.negAsymp φ' =>
|
||||
simp only [anPart_posAsymp, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
lemma superCommute_crPart_anPart (φ φ' : 𝓕.States) :
|
||||
⟨crPart (StateAlgebra.ofState φ), anPart (StateAlgebra.ofState φ')⟩ₛca =
|
||||
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
anPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) := by
|
||||
match φ, φ' with
|
||||
| States.posAsymp φ, _ =>
|
||||
simp only [crPart_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
|
||||
mul_zero, sub_self]
|
||||
| _, States.negAsymp φ =>
|
||||
simp only [anPart_negAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
|
||||
sub_self]
|
||||
| States.position φ, States.position φ' =>
|
||||
simp only [crPart_position, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.position φ, States.posAsymp φ' =>
|
||||
simp only [crPart_position, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.negAsymp φ, States.position φ' =>
|
||||
simp only [crPart_negAsymp, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.negAsymp φ, States.posAsymp φ' =>
|
||||
simp only [crPart_negAsymp, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
lemma superCommute_crPart_crPart (φ φ' : 𝓕.States) :
|
||||
⟨crPart (StateAlgebra.ofState φ), crPart (StateAlgebra.ofState φ')⟩ₛca =
|
||||
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
crPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) := by
|
||||
match φ, φ' with
|
||||
| States.posAsymp φ, _ =>
|
||||
simp only [crPart_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
|
||||
mul_zero, sub_self]
|
||||
| _, States.posAsymp φ =>
|
||||
simp only [crPart_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul, sub_self]
|
||||
| States.position φ, States.position φ' =>
|
||||
simp only [crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.position φ, States.negAsymp φ' =>
|
||||
simp only [crPart_position, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.negAsymp φ, States.position φ' =>
|
||||
simp only [crPart_negAsymp, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.negAsymp φ, States.negAsymp φ' =>
|
||||
simp only [crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
lemma superCommute_anPart_anPart (φ φ' : 𝓕.States) :
|
||||
⟨anPart (StateAlgebra.ofState φ), anPart (StateAlgebra.ofState φ')⟩ₛca =
|
||||
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
anPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) := by
|
||||
match φ, φ' with
|
||||
| States.negAsymp φ, _ =>
|
||||
simp
|
||||
| _, States.negAsymp φ =>
|
||||
simp
|
||||
| States.position φ, States.position φ' =>
|
||||
simp only [anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.position φ, States.posAsymp φ' =>
|
||||
simp only [anPart_position, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.posAsymp φ, States.position φ' =>
|
||||
simp only [anPart_posAsymp, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
| States.posAsymp φ, States.posAsymp φ' =>
|
||||
simp only [anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
lemma crPart_anPart_eq_superCommute (φ φ' : 𝓕.States) :
|
||||
lemma crPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
|
||||
crPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
anPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) +
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) +
|
||||
⟨crPart (StateAlgebra.ofState φ), anPart (StateAlgebra.ofState φ')⟩ₛca := by
|
||||
rw [superCommute_crPart_anPart]
|
||||
simp
|
||||
|
||||
lemma anPart_crPart_eq_superCommute (φ φ' : 𝓕.States) :
|
||||
lemma anPart_mul_crPart_eq_superCommute (φ φ' : 𝓕.States) :
|
||||
anPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
crPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) +
|
||||
|
@ -240,83 +310,36 @@ lemma anPart_crPart_eq_superCommute (φ φ' : 𝓕.States) :
|
|||
rw [superCommute_anPart_crPart]
|
||||
simp
|
||||
|
||||
lemma crPart_crPart_eq_superCommute (φ φ' : 𝓕.States) :
|
||||
lemma crPart_mul_crPart_eq_superCommute (φ φ' : 𝓕.States) :
|
||||
crPart (StateAlgebra.ofState φ) * crPart (StateAlgebra.ofState φ') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
crPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) +
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart (StateAlgebra.ofState φ') * crPart (StateAlgebra.ofState φ) +
|
||||
⟨crPart (StateAlgebra.ofState φ), crPart (StateAlgebra.ofState φ')⟩ₛca := by
|
||||
rw [superCommute_crPart_crPart]
|
||||
simp
|
||||
|
||||
lemma anPart_anPart_eq_superCommute (φ φ' : 𝓕.States) :
|
||||
lemma anPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
|
||||
anPart (StateAlgebra.ofState φ) * anPart (StateAlgebra.ofState φ') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
anPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) +
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart (StateAlgebra.ofState φ') * anPart (StateAlgebra.ofState φ) +
|
||||
⟨anPart (StateAlgebra.ofState φ), anPart (StateAlgebra.ofState φ')⟩ₛca := by
|
||||
rw [superCommute_anPart_anPart]
|
||||
simp
|
||||
|
||||
lemma superCommute_crPart_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
⟨crPart (StateAlgebra.ofState φ), ofStateList φs⟩ₛca =
|
||||
crPart (StateAlgebra.ofState φ) * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
|
||||
crPart (StateAlgebra.ofState φ) := by
|
||||
match φ with
|
||||
| States.negAsymp φ =>
|
||||
simp only [crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
|
||||
simp [crAnStatistics]
|
||||
| States.position φ =>
|
||||
simp only [crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
|
||||
simp [crAnStatistics]
|
||||
| States.posAsymp φ =>
|
||||
simp
|
||||
|
||||
lemma superCommute_anPart_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
⟨anPart (StateAlgebra.ofState φ), ofStateList φs⟩ₛca =
|
||||
anPart (StateAlgebra.ofState φ) * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
|
||||
ofStateList φs * anPart (StateAlgebra.ofState φ) := by
|
||||
match φ with
|
||||
| States.negAsymp φ =>
|
||||
simp
|
||||
| States.position φ =>
|
||||
simp only [anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
|
||||
simp [crAnStatistics]
|
||||
| States.posAsymp φ =>
|
||||
simp only [anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
|
||||
simp [crAnStatistics]
|
||||
|
||||
lemma superCommute_crPart_ofState (φ φ' : 𝓕.States) :
|
||||
⟨crPart (StateAlgebra.ofState φ), ofState φ'⟩ₛca =
|
||||
crPart (StateAlgebra.ofState φ) * ofState φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
ofState φ' * crPart (StateAlgebra.ofState φ) := by
|
||||
rw [← ofStateList_singleton, superCommute_crPart_ofStatesList]
|
||||
lemma ofCrAnList_mul_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
|
||||
ofCrAnList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofCrAnList φs
|
||||
+ ⟨ofCrAnList φs, ofStateList φs'⟩ₛca := by
|
||||
rw [superCommute_ofCrAnList_ofStatesList]
|
||||
simp
|
||||
|
||||
lemma superCommute_anPart_ofState (φ φ' : 𝓕.States) :
|
||||
⟨anPart (StateAlgebra.ofState φ), ofState φ'⟩ₛca =
|
||||
anPart (StateAlgebra.ofState φ) * ofState φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
ofState φ' * anPart (StateAlgebra.ofState φ) := by
|
||||
rw [← ofStateList_singleton, superCommute_anPart_ofStatesList]
|
||||
simp
|
||||
/-!
|
||||
|
||||
lemma superCommute_ofCrAnState (φ φ' : 𝓕.CrAnStates) : ⟨ofCrAnState φ, ofCrAnState φ'⟩ₛca =
|
||||
ofCrAnState φ * ofCrAnState φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofCrAnState φ' * ofCrAnState φ := by
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
||||
rw [superCommute_ofCrAnList, ofCrAnList_append]
|
||||
congr
|
||||
rw [ofCrAnList_append]
|
||||
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
|
||||
## Symmetry of the super commutor.
|
||||
|
||||
lemma superCommute_ofCrAnList_symm (φs φs' : List 𝓕.CrAnStates) :
|
||||
-/
|
||||
|
||||
lemma superCommute_ofCrAnList_ofCrAnList_symm (φs φs' : List 𝓕.CrAnStates) :
|
||||
⟨ofCrAnList φs, ofCrAnList φs'⟩ₛca =
|
||||
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) •
|
||||
⟨ofCrAnList φs', ofCrAnList φs⟩ₛca := by
|
||||
rw [superCommute_ofCrAnList, superCommute_ofCrAnList, smul_sub]
|
||||
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • ⟨ofCrAnList φs', ofCrAnList φs⟩ₛca := by
|
||||
rw [superCommute_ofCrAnList_ofCrAnList, superCommute_ofCrAnList_ofCrAnList, smul_sub]
|
||||
simp only [instCommGroup.eq_1, neg_smul, sub_neg_eq_add]
|
||||
rw [smul_smul]
|
||||
conv_rhs =>
|
||||
|
@ -325,10 +348,10 @@ lemma superCommute_ofCrAnList_symm (φs φs' : List 𝓕.CrAnStates) :
|
|||
simp only [one_smul]
|
||||
abel
|
||||
|
||||
lemma superCommute_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
|
||||
lemma superCommute_ofCrAnState_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
|
||||
⟨ofCrAnState φ, ofCrAnState φ'⟩ₛca =
|
||||
(- 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ')) • ⟨ofCrAnState φ', ofCrAnState φ⟩ₛca := by
|
||||
rw [superCommute_ofCrAnState, superCommute_ofCrAnState]
|
||||
rw [superCommute_ofCrAnState_ofCrAnState, superCommute_ofCrAnState_ofCrAnState]
|
||||
rw [smul_sub]
|
||||
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, neg_smul, sub_neg_eq_add]
|
||||
rw [smul_smul]
|
||||
|
@ -338,21 +361,26 @@ lemma superCommute_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
|
|||
simp only [one_smul]
|
||||
abel
|
||||
|
||||
/-!
|
||||
|
||||
## Splitting the super commutor on lists into sums.
|
||||
|
||||
-/
|
||||
lemma superCommute_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
|
||||
⟨ofCrAnList φs, ofCrAnList (φ :: φs')⟩ₛca =
|
||||
⟨ofCrAnList φs, ofCrAnState φ⟩ₛca * ofCrAnList φs' +
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ)
|
||||
• ofCrAnState φ * ⟨ofCrAnList φs, ofCrAnList φs'⟩ₛca := by
|
||||
rw [superCommute_ofCrAnList]
|
||||
rw [superCommute_ofCrAnList_ofCrAnList]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList, sub_mul, ← ofCrAnList_append]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList, sub_mul, ← ofCrAnList_append]
|
||||
rhs
|
||||
rw [FieldStatistic.ofList_singleton, ofCrAnList_append, ofCrAnList_singleton, smul_mul_assoc,
|
||||
mul_assoc, ← ofCrAnList_append]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rw [superCommute_ofCrAnList, mul_sub, smul_mul_assoc]
|
||||
rw [superCommute_ofCrAnList_ofCrAnList, mul_sub, smul_mul_assoc]
|
||||
simp only [instCommGroup.eq_1, List.cons_append, List.append_assoc, List.nil_append,
|
||||
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, sub_add_sub_cancel, sub_right_inj]
|
||||
rw [← ofCrAnList_cons, smul_smul, FieldStatistic.ofList_cons_eq_mul]
|
||||
|
@ -378,11 +406,6 @@ lemma superCommute_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List
|
|||
rw [ofStateList_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
|
||||
simp [mul_comm]
|
||||
|
||||
lemma ofCrAnList_mul_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
|
||||
ofCrAnList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofCrAnList φs
|
||||
+ ⟨ofCrAnList φs, ofStateList φs'⟩ₛca := by
|
||||
rw [superCommute_ofCrAnList_ofStatesList]
|
||||
simp
|
||||
|
||||
lemma superCommute_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
|
||||
(φs' : List 𝓕.CrAnStates) →
|
||||
|
@ -391,7 +414,7 @@ lemma superCommute_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
|
|||
ofCrAnList (φs'.take n) * ⟨ofCrAnList φs, ofCrAnState (φs'.get n)⟩ₛca *
|
||||
ofCrAnList (φs'.drop (n + 1))
|
||||
| [] => by
|
||||
simp [← ofCrAnList_nil, superCommute_ofCrAnList]
|
||||
simp [← ofCrAnList_nil, superCommute_ofCrAnList_ofCrAnList]
|
||||
| φ :: φs' => by
|
||||
rw [superCommute_ofCrAnList_ofCrAnList_cons, superCommute_ofCrAnList_ofCrAnList_eq_sum φs φs']
|
||||
conv_rhs => erw [Fin.sum_univ_succ]
|
||||
|
@ -400,8 +423,7 @@ lemma superCommute_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
|
|||
· simp [Finset.mul_sum, smul_smul, ofCrAnList_cons, mul_assoc,
|
||||
FieldStatistic.ofList_cons_eq_mul, mul_comm]
|
||||
|
||||
lemma superCommute_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) :
|
||||
(φs' : List 𝓕.States) →
|
||||
lemma superCommute_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
|
||||
⟨ofCrAnList φs, ofStateList φs'⟩ₛca =
|
||||
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ List.take n φs') •
|
||||
ofStateList (φs'.take n) * ⟨ofCrAnList φs, ofState (φs'.get n)⟩ₛca *
|
||||
|
|
|
@ -111,7 +111,7 @@ lemma crAnF_normalOrder_superCommute_ofCrAnList_ofCrAnState_eq_zero_mul (φa :
|
|||
(φs : List 𝓕.CrAnStates)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
𝓞.crAnF (normalOrder (a * superCommute (ofCrAnList φs) (ofCrAnState φa) * b)) = 0 := by
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_symm, ofCrAnList_singleton]
|
||||
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList_symm, ofCrAnList_singleton]
|
||||
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
|
||||
Algebra.mul_smul_comm, neg_mul, Algebra.smul_mul_assoc, map_neg, map_smul]
|
||||
rw [crAnF_normalOrder_superCommute_ofCrAnState_ofCrAnList_eq_zero_mul]
|
||||
|
@ -189,8 +189,8 @@ lemma crAnF_normalOrder_ofState_ofState_swap (φ φ' : 𝓕.States) :
|
|||
rhs
|
||||
rw [ofState_eq_crPart_add_anPart, ofState_eq_crPart_add_anPart]
|
||||
rw [mul_add, add_mul, add_mul]
|
||||
rw [crPart_crPart_eq_superCommute, crPart_anPart_eq_superCommute,
|
||||
anPart_anPart_eq_superCommute, anPart_crPart_eq_superCommute]
|
||||
rw [crPart_mul_crPart_eq_superCommute, crPart_mul_anPart_eq_superCommute,
|
||||
anPart_mul_anPart_eq_superCommute, anPart_mul_crPart_eq_superCommute]
|
||||
simp only [FieldStatistic.instCommGroup.eq_1, Algebra.smul_mul_assoc, map_add, map_smul,
|
||||
normalOrder_crPart_mul_crPart, normalOrder_crPart_mul_anPart, normalOrder_anPart_mul_crPart,
|
||||
normalOrder_anPart_mul_anPart, map_mul, crAnF_normalOrder_superCommute_eq_zero, add_zero]
|
||||
|
|
|
@ -13,8 +13,7 @@ generated by these states. We call this the state algebra, or the state free-alg
|
|||
|
||||
The state free-algebra has minimal assumptions, yet can be used to concretely define time-ordering.
|
||||
|
||||
In
|
||||
`HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Basic`
|
||||
In `HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Basic`
|
||||
we defined a related free-algebra generated by creation and annihilation states.
|
||||
|
||||
-/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue