feat: properties of wick contract
This commit is contained in:
parent
4d0e9dbd8a
commit
51158267d3
4 changed files with 652 additions and 424 deletions
|
@ -1,423 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.FeynmanDiagrams.Basic
|
||||
/-!
|
||||
|
||||
# Feynman rules for a two complex scalar fields
|
||||
|
||||
This file serves as a demonstration of a new approach to Feynman rules.
|
||||
|
||||
-/
|
||||
|
||||
namespace TwoComplexScalar
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
/-- The colors of edges which one can associate with a vertex for a theory
|
||||
with two complex scalar fields. -/
|
||||
inductive 𝓔 where
|
||||
/-- Corresponds to the first complex scalar field flowing out of a vertex. -/
|
||||
| complexScalarOut₁ : 𝓔
|
||||
/-- Corresponds to the first complex scalar field flowing into a vertex. -/
|
||||
| complexScalarIn₁ : 𝓔
|
||||
/-- Corresponds to the second complex scalar field flowing out of a vertex. -/
|
||||
| complexScalarOut₂ : 𝓔
|
||||
/-- Corresponds to the second complex scalar field flowing into a vertex. -/
|
||||
| complexScalarIn₂ : 𝓔
|
||||
|
||||
/-- The map taking each color to it's dual, specifying how we can contract edges. -/
|
||||
def ξ : 𝓔 → 𝓔
|
||||
| 𝓔.complexScalarOut₁ => 𝓔.complexScalarIn₁
|
||||
| 𝓔.complexScalarIn₁ => 𝓔.complexScalarOut₁
|
||||
| 𝓔.complexScalarOut₂ => 𝓔.complexScalarIn₂
|
||||
| 𝓔.complexScalarIn₂ => 𝓔.complexScalarOut₂
|
||||
|
||||
/-- The function `ξ` is an involution. -/
|
||||
lemma ξ_involutive : Function.Involutive ξ := by
|
||||
intro x
|
||||
match x with
|
||||
| 𝓔.complexScalarOut₁ => rfl
|
||||
| 𝓔.complexScalarIn₁ => rfl
|
||||
| 𝓔.complexScalarOut₂ => rfl
|
||||
| 𝓔.complexScalarIn₂ => rfl
|
||||
|
||||
/-- The vertices associated with two complex scalars.
|
||||
We call this type, the type of vertex colors. -/
|
||||
inductive 𝓥 where
|
||||
| φ₁φ₁φ₂φ₂ : 𝓥
|
||||
| φ₁φ₁φ₁φ₁ : 𝓥
|
||||
| φ₂φ₂φ₂φ₂ : 𝓥
|
||||
|
||||
/-- To each vertex, the association of the number of edges. -/
|
||||
@[nolint unusedArguments]
|
||||
def 𝓥NoEdges : 𝓥 → ℕ := fun _ => 4
|
||||
|
||||
/-- To each vertex, associates the indexing map of half-edges associated with that edge. -/
|
||||
def 𝓥Edges (v : 𝓥) : Fin (𝓥NoEdges v) → 𝓔 :=
|
||||
match v with
|
||||
| 𝓥.φ₁φ₁φ₂φ₂ => fun i =>
|
||||
match i with
|
||||
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
|
||||
| (1 : Fin 4) => 𝓔.complexScalarIn₁
|
||||
| (2 : Fin 4) => 𝓔.complexScalarOut₂
|
||||
| (3 : Fin 4) => 𝓔.complexScalarIn₂
|
||||
| 𝓥.φ₁φ₁φ₁φ₁ => fun i =>
|
||||
match i with
|
||||
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
|
||||
| (1 : Fin 4) => 𝓔.complexScalarIn₁
|
||||
| (2 : Fin 4) => 𝓔.complexScalarOut₁
|
||||
| (3 : Fin 4) => 𝓔.complexScalarIn₁
|
||||
| 𝓥.φ₂φ₂φ₂φ₂ => fun i =>
|
||||
match i with
|
||||
| (0 : Fin 4)=> 𝓔.complexScalarOut₂
|
||||
| (1 : Fin 4) => 𝓔.complexScalarIn₂
|
||||
| (2 : Fin 4) => 𝓔.complexScalarOut₂
|
||||
| (3 : Fin 4) => 𝓔.complexScalarIn₂
|
||||
|
||||
inductive WickStringLast where
|
||||
| incoming : WickStringLast
|
||||
| vertex : WickStringLast
|
||||
| outgoing : WickStringLast
|
||||
| final : WickStringLast
|
||||
|
||||
open WickStringLast
|
||||
|
||||
def FieldString (n : ℕ) : Type := Fin n → 𝓔
|
||||
|
||||
inductive WickString : {n : ℕ} → (c : FieldString n) → WickStringLast → Type where
|
||||
| empty : WickString Fin.elim0 incoming
|
||||
| incoming {n : ℕ} {c : Fin n → 𝓔} (w : WickString c incoming) (e : 𝓔) :
|
||||
WickString (Fin.cons e c) incoming
|
||||
| endIncoming {n : ℕ} {c : Fin n → 𝓔} (w : WickString c incoming) : WickString c vertex
|
||||
| vertex {n : ℕ} {c : Fin n → 𝓔} (w : WickString c vertex) (v : 𝓥) :
|
||||
WickString (Fin.append (𝓥Edges v) c) vertex
|
||||
| endVertex {n : ℕ} {c : Fin n → 𝓔} (w : WickString c vertex) : WickString c outgoing
|
||||
| outgoing {n : ℕ} {c : Fin n → 𝓔} (w : WickString c outgoing) (e : 𝓔) :
|
||||
WickString (Fin.cons e c) outgoing
|
||||
| endOutgoing {n : ℕ} {c : Fin n → 𝓔} (w : WickString c outgoing) : WickString c final
|
||||
|
||||
inductive WickContract : {n : ℕ} → (f : FieldString n) →
|
||||
{k : ℕ} → (b1 : Fin k → Fin n) → (b2 : Fin k → Fin n) → Type where
|
||||
| string {n : ℕ} {c : Fin n → 𝓔} : WickContract c Fin.elim0 Fin.elim0
|
||||
| contr {n : ℕ} {c : Fin n → 𝓔} {k : ℕ}
|
||||
{b1 : Fin k → Fin n} {b2 : Fin k → Fin n}: (i : Fin n) →
|
||||
(j : Fin n) → (h : c j = ξ (c i)) →
|
||||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||||
(w : WickContract c b1 b2) →
|
||||
WickContract c (Fin.snoc b1 i) (Fin.snoc b2 j)
|
||||
|
||||
namespace WickContract
|
||||
|
||||
/-- The number of nodes of a Wick contraction. -/
|
||||
def size {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract c b1 b2 → ℕ := fun
|
||||
| string => 1
|
||||
| contr _ _ _ _ _ _ _ w => w.size + 1
|
||||
|
||||
def boundFst {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract c b1 b2 → Fin k → Fin n := fun _ => b1
|
||||
|
||||
@[simp]
|
||||
lemma boundFst_contr_castSucc {n k : ℕ} {c : Fin n → 𝓔}
|
||||
{b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract c b1 b2) (r : Fin k) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundFst r.castSucc = w.boundFst r := by
|
||||
simp only [boundFst, Fin.snoc_castSucc]
|
||||
|
||||
@[simp]
|
||||
lemma boundFst_contr_last {n k : ℕ} {c : Fin n → 𝓔}
|
||||
{b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract c b1 b2) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundFst (Fin.last k) = i := by
|
||||
simp only [boundFst, Fin.snoc_last]
|
||||
|
||||
lemma boundFst_strictMono {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract c b1 b2) → StrictMono w.boundFst := fun
|
||||
| string => fun k => Fin.elim0 k
|
||||
| contr i j _ _ hb1 _ _ w => by
|
||||
intro r s hrs
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp
|
||||
apply w.boundFst_strictMono _
|
||||
simpa using hrs
|
||||
· subst hs
|
||||
simp
|
||||
exact hb1 r
|
||||
· subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
have hsp := s.prop
|
||||
rw [Fin.lt_def] at hrs
|
||||
simp at hrs
|
||||
omega
|
||||
· subst hs
|
||||
simp at hrs
|
||||
|
||||
def boundSnd {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract c b1 b2 → Fin k → Fin n := fun _ => b2
|
||||
|
||||
@[simp]
|
||||
lemma boundSnd_contr_castSucc {n k : ℕ} {c : Fin n → 𝓔}
|
||||
{b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract c b1 b2) (r : Fin k) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundSnd r.castSucc = w.boundSnd r := by
|
||||
simp only [boundSnd, Fin.snoc_castSucc]
|
||||
|
||||
@[simp]
|
||||
lemma boundSnd_contr_last {n k : ℕ} {c : Fin n → 𝓔}
|
||||
{b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract c b1 b2) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundSnd (Fin.last k) = j := by
|
||||
simp only [boundSnd, Fin.snoc_last]
|
||||
|
||||
lemma boundSnd_injective {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract c b1 b2) → Function.Injective w.boundSnd := fun
|
||||
| string => by
|
||||
intro i j _
|
||||
exact Fin.elim0 i
|
||||
| contr i j hij hilej hi h2i h2j w => by
|
||||
intro r s hrs
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp at hrs
|
||||
simpa using w.boundSnd_injective hrs
|
||||
· subst hs
|
||||
simp at hrs
|
||||
exact False.elim (h2j r hrs)
|
||||
· subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp at hrs
|
||||
exact False.elim (h2j s hrs.symm)
|
||||
· subst hs
|
||||
rfl
|
||||
|
||||
lemma color_boundSnd_eq_dual_boundFst {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract c b1 b2) → (i : Fin k) → c (w.boundSnd i) = ξ (c (w.boundFst i)) := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j hij hilej hi _ _ w => fun r => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
simpa using w.color_boundSnd_eq_dual_boundFst r
|
||||
· subst hr
|
||||
simpa using hij
|
||||
|
||||
lemma boundFst_lt_boundSnd {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract c b1 b2) → (i : Fin k) → w.boundFst i < w.boundSnd i := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j hij hilej hi _ _ w => fun r => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
simpa using w.boundFst_lt_boundSnd r
|
||||
· subst hr
|
||||
simp
|
||||
exact hilej
|
||||
|
||||
lemma boundFst_neq_boundSnd {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract c b1 b2) → (r1 r2 : Fin k) → b1 r1 ≠ b2 r2 := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j _ hilej h1 h2i h2j w => fun r s => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
<;> rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
obtain ⟨s, hs⟩ := hs
|
||||
subst hr hs
|
||||
simpa using w.boundFst_neq_boundSnd r s
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr hs
|
||||
simp
|
||||
have hn := h1 r
|
||||
omega
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hr hs
|
||||
simp
|
||||
exact (h2i s).symm
|
||||
· subst hr hs
|
||||
simp
|
||||
omega
|
||||
|
||||
def castMaps {n k k' : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} {b1' b2' : Fin k' → Fin n}
|
||||
(hk : k = k')
|
||||
(hb1 : b1 = b1' ∘ Fin.cast hk) (hb2 : b2 = b2' ∘ Fin.cast hk) (w : WickContract c b1 b2) :
|
||||
WickContract c b1' b2' :=
|
||||
cast (by subst hk; rfl) (hb2 ▸ hb1 ▸ w)
|
||||
|
||||
@[simp]
|
||||
lemma castMaps_rfl {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} (w : WickContract c b1 b2) :
|
||||
castMaps rfl rfl rfl w = w := rfl
|
||||
|
||||
lemma mem_snoc' {n k : ℕ} {c : Fin n → 𝓔} {b1' b2' : Fin k → Fin n} :
|
||||
(w : WickContract c b1' b2') →
|
||||
{k' : ℕ} → (hk' : k'.succ = k ) →
|
||||
(b1 b2 : Fin k' → Fin n) → (i j : Fin n) → (h : c j = ξ (c i)) →
|
||||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||||
(hb1' : Fin.snoc b1 i = b1' ∘ Fin.cast hk') →
|
||||
(hb2' : Fin.snoc b2 j = b2' ∘ Fin.cast hk') →
|
||||
∃ (w' : WickContract c b1 b2), w = castMaps hk' hb1' hb2' (contr i j h hilej hb1 hb2i hb2j w')
|
||||
:= fun
|
||||
| string => fun hk' => by
|
||||
simp at hk'
|
||||
| contr i' j' h' hilej' hb1' hb2i' hb2j' w' => by
|
||||
intro hk b1 b2 i j h hilej hb1 hb2i hb2j hb1' hb2'
|
||||
rename_i k' k b1' b2' f
|
||||
have hk2 : k' = k := Nat.succ_inj'.mp hk
|
||||
subst hk2
|
||||
simp_all
|
||||
have hb2'' : b2 = b2' := by
|
||||
funext k
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.castSucc k)
|
||||
· simp
|
||||
· rw [hb2']
|
||||
simp
|
||||
have hb1'' : b1 = b1' := by
|
||||
funext k
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.castSucc k)
|
||||
· simp
|
||||
· rw [hb1']
|
||||
simp
|
||||
have hi : i = i' := by
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.last k')
|
||||
· simp
|
||||
· rw [hb1']
|
||||
simp
|
||||
have hj : j = j' := by
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.last k')
|
||||
· simp
|
||||
· rw [hb2']
|
||||
simp
|
||||
subst hb1'' hb2'' hi hj
|
||||
simp
|
||||
|
||||
|
||||
lemma mem_snoc {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract c (Fin.snoc b1 i) (Fin.snoc b2 j)) :
|
||||
∃ (w' : WickContract c b1 b2), w = contr i j h hilej hb1 hb2i hb2j w' := by
|
||||
exact mem_snoc' w rfl b1 b2 i j h hilej hb1 hb2i hb2j rfl rfl
|
||||
|
||||
lemma is_subsingleton {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n} :
|
||||
Subsingleton (WickContract c b1 b2) := Subsingleton.intro fun w1 w2 => by
|
||||
induction k with
|
||||
| zero =>
|
||||
have hb1 : b1 = Fin.elim0 := Subsingleton.elim _ _
|
||||
have hb2 : b2 = Fin.elim0 := Subsingleton.elim _ _
|
||||
subst hb1 hb2
|
||||
match w1, w2 with
|
||||
| string, string => rfl
|
||||
| succ k hI =>
|
||||
match w1, w2 with
|
||||
| contr i j h hilej hb1 hb2i hb2j w, w2 =>
|
||||
let ⟨w', hw'⟩ := mem_snoc i j h hilej hb1 hb2i hb2j w2
|
||||
rw [hw']
|
||||
apply congrArg (contr i j _ _ _ _ _) (hI w w')
|
||||
|
||||
lemma eq_snoc_castSucc {k n : ℕ} (b1 : Fin k.succ → Fin n) :
|
||||
b1 = Fin.snoc (b1 ∘ Fin.castSucc) (b1 (Fin.last k)) := by
|
||||
funext i
|
||||
rcases Fin.eq_castSucc_or_eq_last i with h1 | h1
|
||||
· obtain ⟨i, rfl⟩ := h1
|
||||
simp
|
||||
· subst h1
|
||||
simp
|
||||
|
||||
def fromMaps {n k : ℕ} (c : Fin n → 𝓔) (b1 b2 : Fin k → Fin n)
|
||||
(hi : ∀ i, c (b2 i) = ξ (c (b1 i)))
|
||||
(hb1ltb2 : ∀ i, b1 i < b2 i)
|
||||
(hb1 : StrictMono b1)
|
||||
(hb1neb2 : ∀ r1 r2, b1 r1 ≠ b2 r2)
|
||||
(hb2 : Function.Injective b2) :
|
||||
WickContract c b1 b2 := by
|
||||
match k with
|
||||
| 0 =>
|
||||
refine castMaps ?_ ?_ ?_ string
|
||||
· rfl
|
||||
· exact funext (fun i => Fin.elim0 i)
|
||||
· exact funext (fun i => Fin.elim0 i)
|
||||
| Nat.succ k =>
|
||||
refine castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
|
||||
(contr (b1 (Fin.last k)) (b2 (Fin.last k)) (hi (Fin.last k)) (hb1ltb2 (Fin.last k)) (fun r => hb1 (Fin.castSucc_lt_last r)) ?_ ?_
|
||||
(fromMaps c (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) (fun i => hi (Fin.castSucc i))
|
||||
(fun i => hb1ltb2 (Fin.castSucc i)) (StrictMono.comp hb1 Fin.strictMono_castSucc)
|
||||
?_ ?_
|
||||
))
|
||||
· exact fun r a => hb1neb2 (Fin.last k) r.castSucc a.symm
|
||||
· exact fun r => hb2.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r ))
|
||||
· exact fun r1 r2 => hb1neb2 r1.castSucc r2.castSucc
|
||||
· exact Function.Injective.comp hb2 (Fin.castSucc_injective k)
|
||||
|
||||
lemma eq_from_maps {n k : ℕ} {c : Fin n → 𝓔} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract c b1 b2) :
|
||||
w = fromMaps c w.boundFst w.boundSnd w.color_boundSnd_eq_dual_boundFst
|
||||
w.boundFst_lt_boundSnd w.boundFst_strictMono w.boundFst_neq_boundSnd w.boundSnd_injective := by
|
||||
exact is_subsingleton.allEq w _
|
||||
|
||||
structure struc {n : ℕ} (c : Fin n → 𝓔) where
|
||||
k : ℕ
|
||||
b1 : Fin k ↪o Fin n
|
||||
b2 : Fin k ↪ Fin n
|
||||
b2_color_eq_dual_b1 : ∀ i, c (b2 i) = ξ (c (b1 i))
|
||||
b1_lt_b2 : ∀ i, b1 i < b2 i
|
||||
b1_neq_b2 : ∀ r1 r2, b1 r1 ≠ b2 r2
|
||||
|
||||
def strucEquivSigma {n : ℕ} (c : Fin n → 𝓔) :
|
||||
struc c ≃ Σ (k : ℕ) (b1 : Fin k → Fin n) (b2 : Fin k → Fin n), WickContract c b1 b2 where
|
||||
toFun s := ⟨s.k, s.b1, s.b2, fromMaps c s.b1 s.b2 s.b2_color_eq_dual_b1
|
||||
s.b1_lt_b2 s.b1.strictMono s.b1_neq_b2 s.b2.inj'⟩
|
||||
invFun x :=
|
||||
match x with
|
||||
| ⟨k, b1, b2, w⟩ => ⟨k, OrderEmbedding.ofStrictMono b1 w.boundFst_strictMono,
|
||||
⟨b2, w.boundSnd_injective⟩,
|
||||
w.color_boundSnd_eq_dual_boundFst, w.boundFst_lt_boundSnd, w.boundFst_neq_boundSnd⟩
|
||||
left_inv s := rfl
|
||||
right_inv w := by
|
||||
match w with
|
||||
| ⟨k, b1, b2, w⟩ =>
|
||||
simp only [OrderEmbedding.coe_ofStrictMono, Function.Embedding.coeFn_mk, Sigma.mk.inj_iff,
|
||||
heq_eq_eq, true_and]
|
||||
exact (eq_from_maps w).symm
|
||||
|
||||
|
||||
end WickContract
|
||||
|
||||
end TwoComplexScalar
|
540
HepLean/FeynmanDiagrams/Wick/Contract.lean
Normal file
540
HepLean/FeynmanDiagrams/Wick/Contract.lean
Normal file
|
@ -0,0 +1,540 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.FeynmanDiagrams.Wick.String
|
||||
/-!
|
||||
|
||||
# Wick Contract
|
||||
|
||||
Currently this file is only for an example of Wick contracts, correpsonding to a
|
||||
theory with two complex scalar fields. The concepts will however generalize.
|
||||
|
||||
## Further reading
|
||||
|
||||
- https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/theoretical-physics/msc/current/qft/handouts/qftwickstheorem.pdf
|
||||
|
||||
-/
|
||||
|
||||
namespace TwoComplexScalar
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
inductive WickContract : {n : ℕ} → {c : Fin n → 𝓔} → (str : WickString c final) →
|
||||
{k : ℕ} → (b1 : Fin k → Fin n) → (b2 : Fin k → Fin n) → Type where
|
||||
| string {n : ℕ} {c : Fin n → 𝓔} {str : WickString c final} : WickContract str Fin.elim0 Fin.elim0
|
||||
| contr {n : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {k : ℕ}
|
||||
{b1 : Fin k → Fin n} {b2 : Fin k → Fin n}: (i : Fin n) →
|
||||
(j : Fin n) → (h : c j = ξ (c i)) →
|
||||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||||
(w : WickContract str b1 b2) →
|
||||
WickContract str (Fin.snoc b1 i) (Fin.snoc b2 j)
|
||||
|
||||
namespace WickContract
|
||||
|
||||
/-- The number of nodes of a Wick contraction. -/
|
||||
def size {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract str b1 b2 → ℕ := fun
|
||||
| string => 0
|
||||
| contr _ _ _ _ _ _ _ w => w.size + 1
|
||||
|
||||
/-- The number of nodes in a wick contraction tree is the same as `k`. -/
|
||||
lemma size_eq_k {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → w.size = k := fun
|
||||
| string => rfl
|
||||
| contr _ _ _ _ _ _ _ w => by
|
||||
simpa [size] using w.size_eq_k
|
||||
|
||||
def boundFst {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract str b1 b2 → Fin k → Fin n := fun _ => b1
|
||||
|
||||
@[simp]
|
||||
lemma boundFst_contr_castSucc {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final}
|
||||
{b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) (r : Fin k) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundFst r.castSucc = w.boundFst r := by
|
||||
simp only [boundFst, Fin.snoc_castSucc]
|
||||
|
||||
@[simp]
|
||||
lemma boundFst_contr_last {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final}
|
||||
{b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundFst (Fin.last k) = i := by
|
||||
simp only [boundFst, Fin.snoc_last]
|
||||
|
||||
lemma boundFst_strictMono {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → StrictMono w.boundFst := fun
|
||||
| string => fun k => Fin.elim0 k
|
||||
| contr i j _ _ hb1 _ _ w => by
|
||||
intro r s hrs
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp
|
||||
apply w.boundFst_strictMono _
|
||||
simpa using hrs
|
||||
· subst hs
|
||||
simp
|
||||
exact hb1 r
|
||||
· subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
have hsp := s.prop
|
||||
rw [Fin.lt_def] at hrs
|
||||
simp at hrs
|
||||
omega
|
||||
· subst hs
|
||||
simp at hrs
|
||||
|
||||
def boundSnd {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract str b1 b2 → Fin k → Fin n := fun _ => b2
|
||||
|
||||
@[simp]
|
||||
lemma boundSnd_contr_castSucc {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final}
|
||||
{b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) (r : Fin k) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundSnd r.castSucc = w.boundSnd r := by
|
||||
simp only [boundSnd, Fin.snoc_castSucc]
|
||||
|
||||
@[simp]
|
||||
lemma boundSnd_contr_last {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final}
|
||||
{b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundSnd (Fin.last k) = j := by
|
||||
simp only [boundSnd, Fin.snoc_last]
|
||||
|
||||
lemma boundSnd_injective {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → Function.Injective w.boundSnd := fun
|
||||
| string => by
|
||||
intro i j _
|
||||
exact Fin.elim0 i
|
||||
| contr i j hij hilej hi h2i h2j w => by
|
||||
intro r s hrs
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp at hrs
|
||||
simpa using w.boundSnd_injective hrs
|
||||
· subst hs
|
||||
simp at hrs
|
||||
exact False.elim (h2j r hrs)
|
||||
· subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp at hrs
|
||||
exact False.elim (h2j s hrs.symm)
|
||||
· subst hs
|
||||
rfl
|
||||
|
||||
lemma color_boundSnd_eq_dual_boundFst {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → (i : Fin k) → c (w.boundSnd i) = ξ (c (w.boundFst i)) := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j hij hilej hi _ _ w => fun r => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
simpa using w.color_boundSnd_eq_dual_boundFst r
|
||||
· subst hr
|
||||
simpa using hij
|
||||
|
||||
lemma boundFst_lt_boundSnd {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → (i : Fin k) → w.boundFst i < w.boundSnd i := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j hij hilej hi _ _ w => fun r => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
simpa using w.boundFst_lt_boundSnd r
|
||||
· subst hr
|
||||
simp
|
||||
exact hilej
|
||||
|
||||
lemma boundFst_neq_boundSnd {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → (r1 r2 : Fin k) → b1 r1 ≠ b2 r2 := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j _ hilej h1 h2i h2j w => fun r s => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
<;> rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
obtain ⟨s, hs⟩ := hs
|
||||
subst hr hs
|
||||
simpa using w.boundFst_neq_boundSnd r s
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr hs
|
||||
simp
|
||||
have hn := h1 r
|
||||
omega
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hr hs
|
||||
simp
|
||||
exact (h2i s).symm
|
||||
· subst hr hs
|
||||
simp
|
||||
omega
|
||||
|
||||
def castMaps {n k k' : ℕ} {c : Fin n → 𝓔}
|
||||
{str : WickString c final} {b1 b2 : Fin k → Fin n} {b1' b2' : Fin k' → Fin n}
|
||||
(hk : k = k')
|
||||
(hb1 : b1 = b1' ∘ Fin.cast hk) (hb2 : b2 = b2' ∘ Fin.cast hk) (w : WickContract str b1 b2) :
|
||||
WickContract str b1' b2' :=
|
||||
cast (by subst hk; rfl) (hb2 ▸ hb1 ▸ w)
|
||||
|
||||
@[simp]
|
||||
lemma castMaps_rfl {n k : ℕ} {c : Fin n → 𝓔}{str : WickString c final}
|
||||
{b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||||
castMaps rfl rfl rfl w = w := rfl
|
||||
|
||||
lemma mem_snoc' {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1' b2' : Fin k → Fin n} :
|
||||
(w : WickContract str b1' b2') →
|
||||
{k' : ℕ} → (hk' : k'.succ = k ) →
|
||||
(b1 b2 : Fin k' → Fin n) → (i j : Fin n) → (h : c j = ξ (c i)) →
|
||||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||||
(hb1' : Fin.snoc b1 i = b1' ∘ Fin.cast hk') →
|
||||
(hb2' : Fin.snoc b2 j = b2' ∘ Fin.cast hk') →
|
||||
∃ (w' : WickContract str b1 b2), w = castMaps hk' hb1' hb2' (contr i j h hilej hb1 hb2i hb2j w')
|
||||
:= fun
|
||||
| string => fun hk' => by
|
||||
simp at hk'
|
||||
| contr i' j' h' hilej' hb1' hb2i' hb2j' w' => by
|
||||
intro hk b1 b2 i j h hilej hb1 hb2i hb2j hb1' hb2'
|
||||
rename_i k' k b1' b2' f
|
||||
have hk2 : k' = k := Nat.succ_inj'.mp hk
|
||||
subst hk2
|
||||
simp_all
|
||||
have hb2'' : b2 = b2' := by
|
||||
funext k
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.castSucc k)
|
||||
· simp
|
||||
· rw [hb2']
|
||||
simp
|
||||
have hb1'' : b1 = b1' := by
|
||||
funext k
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.castSucc k)
|
||||
· simp
|
||||
· rw [hb1']
|
||||
simp
|
||||
have hi : i = i' := by
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.last k')
|
||||
· simp
|
||||
· rw [hb1']
|
||||
simp
|
||||
have hj : j = j' := by
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.last k')
|
||||
· simp
|
||||
· rw [hb2']
|
||||
simp
|
||||
subst hb1'' hb2'' hi hj
|
||||
simp
|
||||
|
||||
|
||||
lemma mem_snoc {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str (Fin.snoc b1 i) (Fin.snoc b2 j)) :
|
||||
∃ (w' : WickContract str b1 b2), w = contr i j h hilej hb1 hb2i hb2j w' := by
|
||||
exact mem_snoc' w rfl b1 b2 i j h hilej hb1 hb2i hb2j rfl rfl
|
||||
|
||||
lemma is_subsingleton {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} :
|
||||
Subsingleton (WickContract str b1 b2) := Subsingleton.intro fun w1 w2 => by
|
||||
induction k with
|
||||
| zero =>
|
||||
have hb1 : b1 = Fin.elim0 := Subsingleton.elim _ _
|
||||
have hb2 : b2 = Fin.elim0 := Subsingleton.elim _ _
|
||||
subst hb1 hb2
|
||||
match w1, w2 with
|
||||
| string, string => rfl
|
||||
| succ k hI =>
|
||||
match w1, w2 with
|
||||
| contr i j h hilej hb1 hb2i hb2j w, w2 =>
|
||||
let ⟨w', hw'⟩ := mem_snoc i j h hilej hb1 hb2i hb2j w2
|
||||
rw [hw']
|
||||
apply congrArg (contr i j _ _ _ _ _) (hI w w')
|
||||
|
||||
lemma eq_snoc_castSucc {k n : ℕ} (b1 : Fin k.succ → Fin n) :
|
||||
b1 = Fin.snoc (b1 ∘ Fin.castSucc) (b1 (Fin.last k)) := by
|
||||
funext i
|
||||
rcases Fin.eq_castSucc_or_eq_last i with h1 | h1
|
||||
· obtain ⟨i, rfl⟩ := h1
|
||||
simp
|
||||
· subst h1
|
||||
simp
|
||||
|
||||
def fromMaps {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} (b1 b2 : Fin k → Fin n)
|
||||
(hi : ∀ i, c (b2 i) = ξ (c (b1 i)))
|
||||
(hb1ltb2 : ∀ i, b1 i < b2 i)
|
||||
(hb1 : StrictMono b1)
|
||||
(hb1neb2 : ∀ r1 r2, b1 r1 ≠ b2 r2)
|
||||
(hb2 : Function.Injective b2) :
|
||||
WickContract str b1 b2 := by
|
||||
match k with
|
||||
| 0 =>
|
||||
refine castMaps ?_ ?_ ?_ string
|
||||
· rfl
|
||||
· exact funext (fun i => Fin.elim0 i)
|
||||
· exact funext (fun i => Fin.elim0 i)
|
||||
| Nat.succ k =>
|
||||
refine castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
|
||||
(contr (b1 (Fin.last k)) (b2 (Fin.last k))
|
||||
(hi (Fin.last k))
|
||||
(hb1ltb2 (Fin.last k))
|
||||
(fun r => hb1 (Fin.castSucc_lt_last r))
|
||||
(fun r a => hb1neb2 (Fin.last k) r.castSucc a.symm)
|
||||
(fun r => hb2.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r )))
|
||||
(fromMaps (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) (fun i => hi (Fin.castSucc i))
|
||||
(fun i => hb1ltb2 (Fin.castSucc i)) (StrictMono.comp hb1 Fin.strictMono_castSucc)
|
||||
?_ ?_))
|
||||
· exact fun r1 r2 => hb1neb2 r1.castSucc r2.castSucc
|
||||
· exact Function.Injective.comp hb2 (Fin.castSucc_injective k)
|
||||
|
||||
def dropLast {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k.succ → Fin n} (w : WickContract str b1 b2) :
|
||||
WickContract str (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) :=
|
||||
fromMaps (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc)
|
||||
(fun i => color_boundSnd_eq_dual_boundFst w i.castSucc)
|
||||
(fun i => boundFst_lt_boundSnd w i.castSucc)
|
||||
(StrictMono.comp w.boundFst_strictMono Fin.strictMono_castSucc)
|
||||
(fun r1 r2 => boundFst_neq_boundSnd w r1.castSucc r2.castSucc)
|
||||
(Function.Injective.comp w.boundSnd_injective (Fin.castSucc_injective k))
|
||||
|
||||
lemma eq_from_maps {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) :
|
||||
w = fromMaps w.boundFst w.boundSnd w.color_boundSnd_eq_dual_boundFst
|
||||
w.boundFst_lt_boundSnd w.boundFst_strictMono w.boundFst_neq_boundSnd w.boundSnd_injective := by
|
||||
exact is_subsingleton.allEq w _
|
||||
|
||||
lemma eq_dropLast_contr {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k.succ → Fin n}
|
||||
(w : WickContract str b1 b2) :
|
||||
w = castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
|
||||
(contr (b1 (Fin.last k)) (b2 (Fin.last k))
|
||||
(w.color_boundSnd_eq_dual_boundFst (Fin.last k))
|
||||
(w.boundFst_lt_boundSnd (Fin.last k))
|
||||
(fun r => w.boundFst_strictMono (Fin.castSucc_lt_last r))
|
||||
(fun r a => w.boundFst_neq_boundSnd (Fin.last k) r.castSucc a.symm)
|
||||
(fun r => w.boundSnd_injective.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r )))
|
||||
(dropLast w)) := by
|
||||
rw [eq_from_maps w]
|
||||
rfl
|
||||
|
||||
def Level {n : ℕ} {c : Fin n → 𝓔} (str : WickString c final) (k : ℕ) : Type :=
|
||||
Σ (b1 : Fin k → Fin n) (b2 : Fin k → Fin n), WickContract str b1 b2
|
||||
|
||||
instance levelZeroFintype {n : ℕ} {c : Fin n → 𝓔} (str : WickString c final) : Fintype (Level str 0) where
|
||||
elems := {⟨Fin.elim0, Fin.elim0, WickContract.string⟩}
|
||||
complete := by
|
||||
intro x
|
||||
match x with
|
||||
| ⟨b1, b2, w⟩ =>
|
||||
have hb1 : b1 = Fin.elim0 := Subsingleton.elim _ _
|
||||
have hb2 : b2 = Fin.elim0 := Subsingleton.elim _ _
|
||||
subst hb1 hb2
|
||||
simp only [Finset.mem_singleton]
|
||||
rw [is_subsingleton.allEq w string]
|
||||
|
||||
structure ContrPair {n : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) where
|
||||
i : Fin n
|
||||
j : Fin n
|
||||
h : c j = ξ (c i)
|
||||
hilej : i < j
|
||||
hb1 : ∀ r, b1 r < i
|
||||
hb2i : ∀ r, b2 r ≠ i
|
||||
hb2j : ∀ r, b2 r ≠ j
|
||||
|
||||
def contrPairEquivSubtype {n : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||||
ContrPair w ≃ {x : Fin n × Fin n // c x.2 = ξ (c x.1) ∧ x.1 < x.2 ∧
|
||||
(∀ r, b1 r < x.1) ∧ (∀ r, b2 r ≠ x.1) ∧ (∀ r, b2 r ≠ x.2)} where
|
||||
toFun cp := ⟨⟨cp.i, cp.j⟩, ⟨cp.h, cp.hilej, cp.hb1, cp.hb2i, cp.hb2j⟩⟩
|
||||
invFun x :=
|
||||
match x with
|
||||
| ⟨⟨i, j⟩, ⟨h, hilej, hb1, hb2i, hb2j⟩⟩ => ⟨i, j, h, hilej, hb1, hb2i, hb2j⟩
|
||||
left_inv x := by rfl
|
||||
right_inv x := by
|
||||
simp_all only [ne_eq]
|
||||
obtain ⟨val, property⟩ := x
|
||||
obtain ⟨fst, snd⟩ := val
|
||||
obtain ⟨left, right⟩ := property
|
||||
obtain ⟨left_1, right⟩ := right
|
||||
obtain ⟨left_2, right⟩ := right
|
||||
obtain ⟨left_3, right⟩ := right
|
||||
simp_all only [ne_eq]
|
||||
|
||||
lemma heq_eq {n : ℕ} {c : Fin n → 𝓔} {b1 b2 b1' b2' : Fin k → Fin n} {str : WickString c final}
|
||||
(w : WickContract str b1 b2)
|
||||
(w' : WickContract str b1' b2') (h1 : b1 = b1') (h2 : b2 = b2') : HEq w w':= by
|
||||
subst h1 h2
|
||||
simp
|
||||
exact is_subsingleton.allEq w w'
|
||||
|
||||
def levelSuccEquiv {n : ℕ} {c : Fin n → 𝓔} (str : WickString c final) (k : ℕ) :
|
||||
Level str k.succ ≃ (w : Level str k) × ContrPair w.2.2 where
|
||||
toFun w :=
|
||||
match w with
|
||||
| ⟨b1, b2, w⟩ =>
|
||||
⟨⟨b1 ∘ Fin.castSucc, b2 ∘ Fin.castSucc, dropLast w⟩,
|
||||
⟨b1 (Fin.last k), b2 (Fin.last k),
|
||||
w.color_boundSnd_eq_dual_boundFst (Fin.last k),
|
||||
w.boundFst_lt_boundSnd (Fin.last k),
|
||||
fun r => w.boundFst_strictMono (Fin.castSucc_lt_last r),
|
||||
fun r a => w.boundFst_neq_boundSnd (Fin.last k) r.castSucc a.symm,
|
||||
fun r => w.boundSnd_injective.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r))⟩⟩
|
||||
invFun w :=
|
||||
match w with
|
||||
| ⟨⟨b1, b2, w⟩, cp⟩ => ⟨Fin.snoc b1 cp.i, Fin.snoc b2 cp.j,
|
||||
contr cp.i cp.j cp.h cp.hilej cp.hb1 cp.hb2i cp.hb2j w⟩
|
||||
left_inv w := by
|
||||
match w with
|
||||
| ⟨b1, b2, w⟩ =>
|
||||
simp
|
||||
congr
|
||||
· exact Eq.symm (eq_snoc_castSucc b1)
|
||||
· funext b2
|
||||
congr
|
||||
exact Eq.symm (eq_snoc_castSucc b1)
|
||||
· exact Eq.symm (eq_snoc_castSucc b2)
|
||||
· rw [eq_dropLast_contr w]
|
||||
simp only [castMaps, Nat.succ_eq_add_one, cast_eq, heq_eqRec_iff_heq, heq_eq_eq,
|
||||
contr.injEq]
|
||||
rfl
|
||||
right_inv w := by
|
||||
match w with
|
||||
| ⟨⟨b1, b2, w⟩, cp⟩ =>
|
||||
simp
|
||||
apply And.intro
|
||||
· congr
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· funext b2
|
||||
congr
|
||||
exact Fin.snoc_comp_castSucc
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· exact heq_eq _ _ Fin.snoc_comp_castSucc Fin.snoc_comp_castSucc
|
||||
· congr
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· exact heq_eq _ _ Fin.snoc_comp_castSucc Fin.snoc_comp_castSucc
|
||||
· simp
|
||||
· simp
|
||||
· simp
|
||||
|
||||
|
||||
def bound {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : Fin k ⊕ Fin k → Fin n :=
|
||||
Sum.elim w.boundFst w.boundSnd
|
||||
|
||||
@[simp]
|
||||
lemma bound_inl {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) (i : Fin k) : w.bound (Sum.inl i) = w.boundFst i := rfl
|
||||
|
||||
@[simp]
|
||||
lemma bound_inr {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) (i : Fin k) : w.bound (Sum.inr i) = w.boundSnd i := rfl
|
||||
|
||||
lemma bound_injection {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : Function.Injective w.bound := by
|
||||
intro x y h
|
||||
match x, y with
|
||||
| Sum.inl x, Sum.inl y =>
|
||||
simp at h
|
||||
simpa using (StrictMono.injective w.boundFst_strictMono).eq_iff.mp h
|
||||
| Sum.inr x, Sum.inr y =>
|
||||
simp at h
|
||||
simpa using w.boundSnd_injective h
|
||||
| Sum.inl x, Sum.inr y =>
|
||||
simp at h
|
||||
exact False.elim (w.boundFst_neq_boundSnd x y h)
|
||||
| Sum.inr x, Sum.inl y =>
|
||||
simp at h
|
||||
exact False.elim (w.boundFst_neq_boundSnd y x h.symm)
|
||||
|
||||
|
||||
lemma bound_le_total {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : 2 * k ≤ n := by
|
||||
refine Fin.nonempty_embedding_iff.mp ⟨w.bound ∘ finSumFinEquiv.symm ∘ Fin.cast (Nat.two_mul k),
|
||||
?_⟩
|
||||
apply Function.Injective.comp (Function.Injective.comp _ finSumFinEquiv.symm.injective)
|
||||
· exact Fin.cast_injective (Nat.two_mul k)
|
||||
· exact bound_injection w
|
||||
|
||||
def unboundList {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : List (Fin n) :=
|
||||
List.filter (fun i => decide (∀ r, w.bound r ≠ i)) (List.finRange n)
|
||||
|
||||
lemma unboundList_nodup {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : (w.unboundList).Nodup := List.Nodup.filter _ (List.nodup_finRange n)
|
||||
|
||||
lemma unboundList_length {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : w.unboundList.length = n - 2 * k := by
|
||||
rw [← List.Nodup.dedup w.unboundList_nodup]
|
||||
rw [← List.card_toFinset, unboundList]
|
||||
rw [List.toFinset_filter, List.toFinset_finRange]
|
||||
have hn := Finset.filter_card_add_filter_neg_card_eq_card (s := Finset.univ) (fun (i : Fin n) => i ∈ Finset.image w.bound Finset.univ)
|
||||
have hn' :(Finset.filter (fun i => i ∈ Finset.image w.bound Finset.univ) Finset.univ).card =
|
||||
(Finset.image w.bound Finset.univ).card := by
|
||||
refine Finset.card_equiv (Equiv.refl _) fun i => ?_
|
||||
simp
|
||||
rw [hn'] at hn
|
||||
rw [Finset.card_image_of_injective] at hn
|
||||
simp only [Finset.card_univ, Fintype.card_sum, Fintype.card_fin,
|
||||
Finset.mem_univ, true_and, Sum.exists, bound_inl, bound_inr, not_or, not_exists] at hn
|
||||
have hn'' : (Finset.filter (fun a => a ∉ Finset.image w.bound Finset.univ) Finset.univ).card = n - 2 * k := by
|
||||
omega
|
||||
rw [← hn'']
|
||||
congr
|
||||
funext x
|
||||
simp
|
||||
exact bound_injection w
|
||||
|
||||
lemma unboundList_sorted {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : List.Sorted (fun i j => i < j) w.unboundList :=
|
||||
List.Pairwise.sublist (List.filter_sublist (List.finRange n)) (List.pairwise_lt_finRange n)
|
||||
|
||||
def unbound {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : Fin (n - 2 * k) → Fin n :=
|
||||
w.unboundList.get ∘ Fin.cast w.unboundList_length.symm
|
||||
|
||||
lemma unbound_injective {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : Function.Injective w.unbound := by
|
||||
apply Function.Injective.comp
|
||||
· rw [← List.nodup_iff_injective_get]
|
||||
exact w.unboundList_nodup
|
||||
· exact Fin.cast_injective _
|
||||
|
||||
lemma unbound_strictMono {n k : ℕ} {c : Fin n → 𝓔} {str : WickString c final} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : StrictMono w.unbound := by
|
||||
apply StrictMono.comp
|
||||
· refine List.Sorted.get_strictMono w.unboundList_sorted
|
||||
· exact fun ⦃a b⦄ a => a
|
||||
|
||||
end WickContract
|
||||
|
||||
end TwoComplexScalar
|
110
HepLean/FeynmanDiagrams/Wick/String.lean
Normal file
110
HepLean/FeynmanDiagrams/Wick/String.lean
Normal file
|
@ -0,0 +1,110 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.FeynmanDiagrams.Basic
|
||||
/-!
|
||||
# Wick strings
|
||||
|
||||
Currently this file is only for an example of Wick strings, correpsonding to a
|
||||
theory with two complex scalar fields. The concepts will however generalize.
|
||||
|
||||
A wick string is defined to be a sequence of input fields,
|
||||
followed by a squence of vertices, followed by a sequence of output fields.
|
||||
|
||||
A wick string can be combined with an appropriate map to spacetime to produce a specific
|
||||
term in the ring of operators. This has yet to be implemented.
|
||||
|
||||
-/
|
||||
|
||||
namespace TwoComplexScalar
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
/-- The colors of edges which one can associate with a vertex for a theory
|
||||
with two complex scalar fields. -/
|
||||
inductive 𝓔 where
|
||||
/-- Corresponds to the first complex scalar field flowing out of a vertex. -/
|
||||
| complexScalarOut₁ : 𝓔
|
||||
/-- Corresponds to the first complex scalar field flowing into a vertex. -/
|
||||
| complexScalarIn₁ : 𝓔
|
||||
/-- Corresponds to the second complex scalar field flowing out of a vertex. -/
|
||||
| complexScalarOut₂ : 𝓔
|
||||
/-- Corresponds to the second complex scalar field flowing into a vertex. -/
|
||||
| complexScalarIn₂ : 𝓔
|
||||
|
||||
/-- The map taking each color to it's dual, specifying how we can contract edges. -/
|
||||
def ξ : 𝓔 → 𝓔
|
||||
| 𝓔.complexScalarOut₁ => 𝓔.complexScalarIn₁
|
||||
| 𝓔.complexScalarIn₁ => 𝓔.complexScalarOut₁
|
||||
| 𝓔.complexScalarOut₂ => 𝓔.complexScalarIn₂
|
||||
| 𝓔.complexScalarIn₂ => 𝓔.complexScalarOut₂
|
||||
|
||||
/-- The function `ξ` is an involution. -/
|
||||
lemma ξ_involutive : Function.Involutive ξ := by
|
||||
intro x
|
||||
match x with
|
||||
| 𝓔.complexScalarOut₁ => rfl
|
||||
| 𝓔.complexScalarIn₁ => rfl
|
||||
| 𝓔.complexScalarOut₂ => rfl
|
||||
| 𝓔.complexScalarIn₂ => rfl
|
||||
|
||||
/-- The vertices associated with two complex scalars.
|
||||
We call this type, the type of vertex colors. -/
|
||||
inductive 𝓥 where
|
||||
| φ₁φ₁φ₂φ₂ : 𝓥
|
||||
| φ₁φ₁φ₁φ₁ : 𝓥
|
||||
| φ₂φ₂φ₂φ₂ : 𝓥
|
||||
|
||||
/-- To each vertex, the association of the number of edges. -/
|
||||
@[nolint unusedArguments]
|
||||
def 𝓥NoEdges : 𝓥 → ℕ := fun _ => 4
|
||||
|
||||
/-- To each vertex, associates the indexing map of half-edges associated with that edge. -/
|
||||
def 𝓥Edges (v : 𝓥) : Fin (𝓥NoEdges v) → 𝓔 :=
|
||||
match v with
|
||||
| 𝓥.φ₁φ₁φ₂φ₂ => fun i =>
|
||||
match i with
|
||||
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
|
||||
| (1 : Fin 4) => 𝓔.complexScalarIn₁
|
||||
| (2 : Fin 4) => 𝓔.complexScalarOut₂
|
||||
| (3 : Fin 4) => 𝓔.complexScalarIn₂
|
||||
| 𝓥.φ₁φ₁φ₁φ₁ => fun i =>
|
||||
match i with
|
||||
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
|
||||
| (1 : Fin 4) => 𝓔.complexScalarIn₁
|
||||
| (2 : Fin 4) => 𝓔.complexScalarOut₁
|
||||
| (3 : Fin 4) => 𝓔.complexScalarIn₁
|
||||
| 𝓥.φ₂φ₂φ₂φ₂ => fun i =>
|
||||
match i with
|
||||
| (0 : Fin 4)=> 𝓔.complexScalarOut₂
|
||||
| (1 : Fin 4) => 𝓔.complexScalarIn₂
|
||||
| (2 : Fin 4) => 𝓔.complexScalarOut₂
|
||||
| (3 : Fin 4) => 𝓔.complexScalarIn₂
|
||||
|
||||
inductive WickStringLast where
|
||||
| incoming : WickStringLast
|
||||
| vertex : WickStringLast
|
||||
| outgoing : WickStringLast
|
||||
| final : WickStringLast
|
||||
|
||||
open WickStringLast
|
||||
|
||||
/-- A wick string is a representation of a string of fields from a theory.
|
||||
E.g. `φ(x1) φ(x2) φ(y) φ(y) φ(y) φ(x3)`. The use of vertices in the Wick string
|
||||
allows us to identify which fields have the same space-time coordinate. -/
|
||||
inductive WickString : {n : ℕ} → (c : Fin n → 𝓔) → WickStringLast → Type where
|
||||
| empty : WickString Fin.elim0 incoming
|
||||
| incoming {n : ℕ} {c : Fin n → 𝓔} (w : WickString c incoming) (e : 𝓔) :
|
||||
WickString (Fin.cons e c) incoming
|
||||
| endIncoming {n : ℕ} {c : Fin n → 𝓔} (w : WickString c incoming) : WickString c vertex
|
||||
| vertex {n : ℕ} {c : Fin n → 𝓔} (w : WickString c vertex) (v : 𝓥) :
|
||||
WickString (Fin.append (𝓥Edges v) c) vertex
|
||||
| endVertex {n : ℕ} {c : Fin n → 𝓔} (w : WickString c vertex) : WickString c outgoing
|
||||
| outgoing {n : ℕ} {c : Fin n → 𝓔} (w : WickString c outgoing) (e : 𝓔) :
|
||||
WickString (Fin.cons e c) outgoing
|
||||
| endOutgoing {n : ℕ} {c : Fin n → 𝓔} (w : WickString c outgoing) : WickString c final
|
||||
|
||||
end TwoComplexScalar
|
Loading…
Add table
Add a link
Reference in a new issue