feat: Complete proof for lhs contr and prod
This commit is contained in:
parent
4521cc0e64
commit
511fe92cef
1 changed files with 10 additions and 10 deletions
|
@ -156,6 +156,15 @@ lemma contrMap_prod :
|
|||
((PiTensorProduct.tprod S.k) _))
|
||||
conv_rhs => rw [contrMap, TensorSpecies.contrMap_tprod]
|
||||
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
|
||||
have hL (a : Fin n.succ.succ) {b : Fin (n + 1 + 1) ⊕ Fin n1}
|
||||
(h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp ))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete b)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
|
||||
subst h
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, instMonoidalCategoryStruct_tensorObj_hom,
|
||||
Sum.elim_inl, eqToHom_refl, Discrete.functor_map_id, Action.id_hom, Functor.id_obj,
|
||||
ModuleCat.id_apply]
|
||||
rfl
|
||||
congr 1
|
||||
/- The contraction. -/
|
||||
· apply congrArg
|
||||
|
@ -179,16 +188,7 @@ lemma contrMap_prod :
|
|||
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply]
|
||||
simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, equivToIso_homToEquiv,
|
||||
LinearEquiv.coe_coe]
|
||||
have h1' {a : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1}
|
||||
(h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp ))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete b)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
|
||||
subst h
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, instMonoidalCategoryStruct_tensorObj_hom,
|
||||
Sum.elim_inl, eqToHom_refl, Discrete.functor_map_id, Action.id_hom, Functor.id_obj,
|
||||
ModuleCat.id_apply]
|
||||
rfl
|
||||
apply h1'
|
||||
apply hL
|
||||
exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl)
|
||||
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply,
|
||||
ModuleCat.id_apply]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue