docs: Add some docs
This commit is contained in:
parent
53a19dbe71
commit
51c56d3e07
1 changed files with 7 additions and 8 deletions
|
@ -55,14 +55,11 @@ lemma leftContrJ_succAbove_leftContrI : (q.leftContrI n1).succAbove (q.leftContr
|
||||||
simp only [Fin.succAbove, Nat.succ_eq_add_one, leftContrEquivSucc, RelIso.coe_fn_toEquiv,
|
simp only [Fin.succAbove, Nat.succ_eq_add_one, leftContrEquivSucc, RelIso.coe_fn_toEquiv,
|
||||||
Fin.castOrderIso_apply, leftContrEquivSuccSucc, Fin.coe_cast, Fin.coe_castAdd]
|
Fin.castOrderIso_apply, leftContrEquivSuccSucc, Fin.coe_cast, Fin.coe_castAdd]
|
||||||
split_ifs
|
split_ifs
|
||||||
<;> rename_i h1 h2
|
any_goals rfl
|
||||||
<;> rw [Fin.lt_def] at h1 h2
|
all_goals
|
||||||
· simp only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd]
|
rename_i h1 h2
|
||||||
· simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_true_eq_false]
|
rw [Fin.lt_def] at h1 h2
|
||||||
· simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_lt, Fin.val_succ,
|
simp_all
|
||||||
add_right_eq_self, one_ne_zero]
|
|
||||||
omega
|
|
||||||
· simp only [Fin.val_succ, Fin.coe_cast, Fin.coe_castAdd]
|
|
||||||
|
|
||||||
lemma succAbove_leftContrJ_leftContrI_castAdd (x : Fin n) :
|
lemma succAbove_leftContrJ_leftContrI_castAdd (x : Fin n) :
|
||||||
(q.leftContrI n1).succAbove ((q.leftContrJ n1).succAbove (Fin.castAdd n1 x)) =
|
(q.leftContrI n1).succAbove ((q.leftContrJ n1).succAbove (Fin.castAdd n1 x)) =
|
||||||
|
@ -539,6 +536,7 @@ lemma prod_contr (t1 : TensorTree S c1) (t : TensorTree S c) :
|
||||||
|
|
||||||
end ContrPair
|
end ContrPair
|
||||||
|
|
||||||
|
/-- Contraction in the LHS of a product can be moved out of that product. -/
|
||||||
theorem contr_prod {n n1 : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
|
theorem contr_prod {n n1 : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
|
||||||
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
|
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
|
||||||
(t : TensorTree S c) (t1 : TensorTree S c1) :
|
(t : TensorTree S c) (t1 : TensorTree S c1) :
|
||||||
|
@ -549,6 +547,7 @@ theorem contr_prod {n n1 : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S
|
||||||
(perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1)))).tensor) :=
|
(perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1)))).tensor) :=
|
||||||
(ContrPair.mk i j hij).contr_prod t t1
|
(ContrPair.mk i j hij).contr_prod t t1
|
||||||
|
|
||||||
|
/-- Contraction in the RHS of a product can be moved out of that product. -/
|
||||||
theorem prod_contr {n n1 : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
|
theorem prod_contr {n n1 : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
|
||||||
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
|
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
|
||||||
(t1 : TensorTree S c1) (t : TensorTree S c) :
|
(t1 : TensorTree S c1) (t : TensorTree S c) :
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue