docs: Add some docs

This commit is contained in:
jstoobysmith 2024-10-28 08:08:01 +00:00
parent 53a19dbe71
commit 51c56d3e07

View file

@ -55,14 +55,11 @@ lemma leftContrJ_succAbove_leftContrI : (q.leftContrI n1).succAbove (q.leftContr
simp only [Fin.succAbove, Nat.succ_eq_add_one, leftContrEquivSucc, RelIso.coe_fn_toEquiv, simp only [Fin.succAbove, Nat.succ_eq_add_one, leftContrEquivSucc, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, leftContrEquivSuccSucc, Fin.coe_cast, Fin.coe_castAdd] Fin.castOrderIso_apply, leftContrEquivSuccSucc, Fin.coe_cast, Fin.coe_castAdd]
split_ifs split_ifs
<;> rename_i h1 h2 any_goals rfl
<;> rw [Fin.lt_def] at h1 h2 all_goals
· simp only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd] rename_i h1 h2
· simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_true_eq_false] rw [Fin.lt_def] at h1 h2
· simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_lt, Fin.val_succ, simp_all
add_right_eq_self, one_ne_zero]
omega
· simp only [Fin.val_succ, Fin.coe_cast, Fin.coe_castAdd]
lemma succAbove_leftContrJ_leftContrI_castAdd (x : Fin n) : lemma succAbove_leftContrJ_leftContrI_castAdd (x : Fin n) :
(q.leftContrI n1).succAbove ((q.leftContrJ n1).succAbove (Fin.castAdd n1 x)) = (q.leftContrI n1).succAbove ((q.leftContrJ n1).succAbove (Fin.castAdd n1 x)) =
@ -539,6 +536,7 @@ lemma prod_contr (t1 : TensorTree S c1) (t : TensorTree S c) :
end ContrPair end ContrPair
/-- Contraction in the LHS of a product can be moved out of that product. -/
theorem contr_prod {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ} theorem contr_prod {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i)) {j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
(t : TensorTree S c) (t1 : TensorTree S c1) : (t : TensorTree S c) (t1 : TensorTree S c1) :
@ -549,6 +547,7 @@ theorem contr_prod {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S
(perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1)))).tensor) := (perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1)))).tensor) :=
(ContrPair.mk i j hij).contr_prod t t1 (ContrPair.mk i j hij).contr_prod t t1
/-- Contraction in the RHS of a product can be moved out of that product. -/
theorem prod_contr {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ} theorem prod_contr {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i)) {j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
(t1 : TensorTree S c1) (t : TensorTree S c) : (t1 : TensorTree S c1) (t : TensorTree S c) :