feat: Indices for index notation
This commit is contained in:
parent
717c4b0681
commit
52bb0bda79
4 changed files with 439 additions and 76 deletions
|
@ -11,7 +11,6 @@ import HepLean.SpaceTime.LorentzTensor.MulActionTensor
|
|||
# Real Lorentz tensors
|
||||
|
||||
-/
|
||||
noncomputable section
|
||||
|
||||
open TensorProduct
|
||||
open minkowskiMatrix
|
||||
|
@ -29,8 +28,43 @@ inductive ColorType
|
|||
| up
|
||||
| down
|
||||
|
||||
def colorTypEquivFin1Fin1 : ColorType ≃ Fin 1 ⊕ Fin 1 where
|
||||
toFun
|
||||
| ColorType.up => Sum.inl ⟨0, Nat.zero_lt_one⟩
|
||||
| ColorType.down => Sum.inr ⟨0, Nat.zero_lt_one⟩
|
||||
invFun
|
||||
| Sum.inl _ => ColorType.up
|
||||
| Sum.inr _ => ColorType.down
|
||||
left_inv := by
|
||||
intro x
|
||||
cases x
|
||||
simp
|
||||
simp
|
||||
right_inv := by
|
||||
intro x
|
||||
cases x
|
||||
simp
|
||||
rename_i f
|
||||
exact (Fin.fin_one_eq_zero f).symm
|
||||
simp
|
||||
rename_i f
|
||||
exact (Fin.fin_one_eq_zero f).symm
|
||||
|
||||
instance : DecidableEq realTensor.ColorType :=
|
||||
Equiv.decidableEq colorTypEquivFin1Fin1
|
||||
|
||||
instance : Fintype realTensor.ColorType where
|
||||
elems := {realTensor.ColorType.up, realTensor.ColorType.down}
|
||||
complete := by
|
||||
intro x
|
||||
cases x
|
||||
simp
|
||||
simp
|
||||
|
||||
end realTensor
|
||||
|
||||
noncomputable section
|
||||
|
||||
open realTensor
|
||||
|
||||
/-! TODO: Set up the notation `𝓛𝓣ℝ` or similar. -/
|
||||
|
@ -88,6 +122,10 @@ def realLorentzTensor (d : ℕ) : TensorStructure ℝ where
|
|||
| realTensor.ColorType.up => asTenProd_contr_asCoTenProd
|
||||
| realTensor.ColorType.down => asCoTenProd_contr_asTenProd
|
||||
|
||||
instance : Fintype (realLorentzTensor d).Color := realTensor.instFintypeColorType
|
||||
|
||||
instance : DecidableEq (realLorentzTensor d).Color := realTensor.instDecidableEqColorType
|
||||
|
||||
/-- The action of the Lorentz group on real Lorentz tensors. -/
|
||||
instance : MulActionTensor (LorentzGroup d) (realLorentzTensor d) where
|
||||
repColorModule μ :=
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue