feat: Indices for index notation

This commit is contained in:
jstoobysmith 2024-08-01 15:08:02 -04:00
parent 717c4b0681
commit 52bb0bda79
4 changed files with 439 additions and 76 deletions

View file

@ -73,8 +73,8 @@ import HepLean.SpaceTime.LorentzGroup.Rotations
import HepLean.SpaceTime.LorentzTensor.Basic
import HepLean.SpaceTime.LorentzTensor.Contraction
import HepLean.SpaceTime.LorentzTensor.Fin
import HepLean.SpaceTime.LorentzTensor.IndexNotation
import HepLean.SpaceTime.LorentzTensor.MulActionTensor
import HepLean.SpaceTime.LorentzTensor.Notation
import HepLean.SpaceTime.LorentzTensor.Real.Basic
import HepLean.SpaceTime.LorentzTensor.RisingLowering
import HepLean.SpaceTime.LorentzVector.AsSelfAdjointMatrix

View file

@ -0,0 +1,399 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.Real.Basic
import Init.NotationExtra
/-!
# Notation for Lorentz Tensors
This file is currently a stub.
We plan to set up index-notation for dealing with tensors.
Some examples:
- `ψᵘ¹ᵘ²φᵤ₁` should correspond to the contraction of the first index of `ψ` and the
only index of `φ`.
- `ψᵘ¹ᵘ² = ψᵘ²ᵘ¹` should define the symmetry of `ψ` under the exchange of its indices.
- `θᵤ₂(ψᵘ¹ᵘ²φᵤ₁) = (θᵤ₂ψᵘ¹ᵘ²)φᵤ₁` should correspond to an associativity properity of
contraction.
It should also be possible to define this generically for any `LorentzTensorStructure`.
Further we plan to make easy to define tensors with indices. E.g. `(ψ : Tenᵘ¹ᵘ²ᵤ₃)`
should correspond to a (real Lorentz) tensors with 3 indices, two upper and one lower.
For `(ψ : Tenᵘ¹ᵘ²ᵤ₃)`, if one writes e.g. `ψᵤ₁ᵘ²ᵤ₃`, this should correspond to a
lowering of the first index of `ψ`.
Further, it will be nice if we can have implicit contractions of indices
e.g. in Weyl fermions.
-/
open Lean
open Lean
open Lean.Parser
open Lean.Elab
open Lean.Elab.Command
variable {R : Type} [CommSemiring R]
/-- The class defining index notation on a type `X`.
Normally `X` will be taken as the type of colors of a `TensorStructure`. -/
class IndexNotation (X : Type) where
/-- The list of characters describing the index notation e.g.
`{'ᵘ', 'ᵤ'}` for real tensors. -/
charList : Finset Char
/-- An equivalence between `X` (colors of indices) and `charList`.
This takes every color of index to its notation character. -/
notaEquiv : X ≃ charList
/-
instance : IndexNotation realTensor.ColorType where
charList := {'ᵘ', 'ᵤ'}
notaEquiv :=
{toFun := fun x =>
match x with
| .up => ⟨'ᵘ', by decide⟩
| .down => ⟨'ᵤ', by decide⟩,
invFun := fun x =>
match x with
| ⟨'ᵘ', _⟩ => .up
| ⟨'ᵤ', _⟩ => .down
| _ => .up,
left_inv := by
intro x
fin_cases x <;> rfl,
right_inv := by
intro x
fin_cases x <;> rfl}
-/
namespace IndexNotation
variable (X : Type) [IndexNotation X]
variable [Fintype X] [DecidableEq X]
/-- The map taking a color to its notation character. -/
def nota {X : Type} [IndexNotation X] (x : X) : Char :=
(IndexNotation.notaEquiv).toFun x
/-- A character is a `notation character` if it is in `charList`. -/
def isNotationChar (c : Char) : Bool :=
if c ∈ charList X then true else false
/-- A character is a numeric superscript if it is e.g. `⁰`, `¹`, etc. -/
def isNumericSupscript (c : Char) : Bool :=
c = '¹' c = '²' c = '³' c = '⁴' c = '⁵' c = '⁶' c = '⁷' c = '⁸' c = '⁹' c = '⁰'
/-- Given a character `f` which is a notation character, this is true if `c`
is a subscript when `f` is a subscript or `c` is a superscript when `f` is a
superscript. -/
def IsIndexId (f : Char) (c : Char) : Bool :=
(isSubScriptAlnum f ∧ isNumericSubscript c)
(¬ isSubScriptAlnum f ∧ isNumericSupscript c)
open String
/-!
## Lists of characters corresponding to indices.
-/
/-- The proposition for a list of characters to be the tail of an index
e.g. `['¹', '⁷', ...]` -/
def listCharIndexTail (f : Char) (l : List Char) : Prop :=
l ≠ [] ∧ List.all l (fun c => IsIndexId f c)
instance : Decidable (listCharIndexTail f l) := instDecidableAnd
/-- The proposition for a list of characters to be the characters of an index
e.g. `['ᵘ', '¹', '⁷', ...]` -/
def listCharIndex (l : List Char) : Prop :=
if h : l = [] then True
else
let sfst := l.head h
if ¬ isNotationChar X sfst then False
else
listCharIndexTail sfst l.tail
lemma listCharIndex_iff (l : List Char) : listCharIndex X l
↔ (if h : l = [] then True else
let sfst := l.head h
if ¬ isNotationChar X sfst then False
else
listCharIndexTail sfst l.tail) := by
rw [listCharIndex]
instance : Decidable (listCharIndex X l) :=
@decidable_of_decidable_of_iff _ _
(@instDecidableDite _ _ _ _ _ <|
fun _ => @instDecidableDite _ _ _ _ _ <|
fun _ => instDecidableListCharIndexTail)
(listCharIndex_iff X l).symm
lemma dropWhile_isIndexSpecifier_length_lt (l : List Char) (hl : l ≠ []) :
(List.dropWhile (fun c => !isNotationChar X c) l.tail).length < l.length := by
let ld := l.tail.dropWhile (fun c => ¬ isNotationChar X c)
let lt := l.tail.takeWhile (fun c => ¬ isNotationChar X c)
simp
rename_i _ inst_1 _ _
have h2 : lt ++ ld = l.tail := by
exact List.takeWhile_append_dropWhile _ _
have h3 := congrArg List.length h2
rw [List.length_append] at h3
have h4 : l.length ≠ 0 := by
simp_all only [Bool.not_eq_true, Bool.not_eq_false, Bool.decide_eq_false, ne_eq, List.takeWhile_eq_nil_iff,
List.length_tail, tsub_pos_iff_lt, zero_add, List.nthLe_tail, Bool.not_eq_true', not_forall,
List.takeWhile_append_dropWhile, List.length_eq_zero, not_false_eq_true, lt, ld]
have h5 : l.tail.length < l.length := by
rw [List.length_tail]
omega
have h6 : ld.length < l.length := by
omega
simpa [ld] using h6
/-- The proposition for a list of characters to be an index string. -/
def listCharIndexString (l : List Char) : Prop :=
if h : l = [] then True
else
let sfst := l.head h
if ¬ isNotationChar X sfst then False
else
let lt := l.tail.takeWhile (fun c => ¬ isNotationChar X c)
let ld := l.tail.dropWhile (fun c => ¬ isNotationChar X c)
if ¬ listCharIndexTail sfst lt then False
else listCharIndexString ld
termination_by l.length
decreasing_by
simpa [ld, InvImage] using dropWhile_isIndexSpecifier_length_lt X l h
/-- A bool version of `listCharIndexString` for computation. -/
def listCharIndexStringBool (l : List Char) : Bool :=
if h : l = [] then true
else
let sfst := l.head h
if ¬ isNotationChar X sfst then false
else
let lt := l.tail.takeWhile (fun c => ¬ isNotationChar X c)
let ld := l.tail.dropWhile (fun c => ¬ isNotationChar X c)
if ¬ listCharIndexTail sfst lt then false
else listCharIndexStringBool ld
termination_by l.length
decreasing_by
simpa [ld, InvImage] using dropWhile_isIndexSpecifier_length_lt X l h
lemma listCharIndexString_iff (l : List Char) : listCharIndexString X l
↔ (if h : l = [] then True else
let sfst := l.head h
if ¬ isNotationChar X sfst then False
else
let lt := l.tail.takeWhile (fun c => ¬ isNotationChar X c)
let ld := l.tail.dropWhile (fun c => ¬ isNotationChar X c)
if ¬ listCharIndexTail sfst lt then False
else listCharIndexString X ld) := by
rw [listCharIndexString]
lemma listCharIndexString_iff_bool (l : List Char) :
listCharIndexString X l ↔ listCharIndexStringBool X l = true := by
rw [listCharIndexString, listCharIndexStringBool]
by_cases h : l = []
simp [h]
simp [h]
intro _ _
exact listCharIndexString_iff_bool _
termination_by l.length
decreasing_by
simpa [InvImage] using dropWhile_isIndexSpecifier_length_lt X l h
instance : Decidable (listCharIndexString X l) :=
@decidable_of_decidable_of_iff _ _
((listCharIndexStringBool X l).decEq true)
(listCharIndexString_iff_bool X l).symm
/-- If a list of characters corresponds to an index string, then its head is an
index specifier. -/
lemma listCharIndexString_head_isIndexSpecifier (l : List Char) (h : listCharIndexString X l)
(hl : l ≠ []) : isNotationChar X (l.head hl) := by
by_contra
rw [listCharIndexString] at h
simp_all only [↓reduceDIte, Bool.false_eq_true, not_false_eq_true, ↓reduceIte]
/-- The tail of the first index in a list of characters corresponds to an index string
(junk on other lists). -/
def listCharIndexStringHeadIndexTail (l : List Char) : List Char :=
l.tail.takeWhile (fun c => ¬ isNotationChar X c)
/-- The tail of the first index in a list of characters corresponds to an index string
is the tail of a list of characters corresponding to an index specified by the head. -/
lemma listCharIndexStringHeadIndexTail_listCharIndexTail (l : List Char) (h : listCharIndexString X l) (hl : l ≠ []) :
listCharIndexTail (l.head hl) (listCharIndexStringHeadIndexTail X l) := by
by_contra
have h1 := listCharIndexString_head_isIndexSpecifier X l h hl
rw [listCharIndexString] at h
rename_i _ _ _ _ x
simp_all only [not_true_eq_false, Bool.not_eq_true, Bool.decide_eq_false, ite_not, if_false_right,
ite_false, dite_false]
obtain ⟨left, _⟩ := h
simp [listCharIndexStringHeadIndexTail] at x
simp_all only [Bool.false_eq_true]
def listCharIndexStringHeadIndex (l : List Char) : List Char :=
if h : l = [] then []
else l.head h :: listCharIndexStringHeadIndexTail X l
/-- The list of characters obtained by dropping the first block which
corresponds to an index. -/
def listCharIndexStringDropHeadIndex (l : List Char) : List Char :=
l.tail.dropWhile (fun c => ¬ isNotationChar X c)
lemma listCharIndexStringHeadIndex_listCharIndex (l : List Char) (h : listCharIndexString X l) :
listCharIndex X (listCharIndexStringHeadIndex X l) := by
by_cases h1 : l = []
· subst h1
simp [listCharIndex, listCharIndexStringHeadIndex]
· simp [listCharIndexStringHeadIndex, listCharIndex, h1]
apply And.intro
exact listCharIndexString_head_isIndexSpecifier X l h h1
exact listCharIndexStringHeadIndexTail_listCharIndexTail X l h h1
lemma listCharIndexStringDropHeadIndex_listCharIndexString (l : List Char) (h : listCharIndexString X l) :
listCharIndexString X (listCharIndexStringDropHeadIndex X l) := by
by_cases h1 : l = []
· subst h1
simp [listCharIndexStringDropHeadIndex, listCharIndexString]
· simp [listCharIndexStringDropHeadIndex, h1]
rw [listCharIndexString] at h
rename_i _ inst_1 _ _
simp_all only [↓reduceDIte, Bool.not_eq_true, Bool.decide_eq_false, ite_not, if_false_right,
if_false_left, Bool.not_eq_false]
/-- Given a list list of characters corresponding to an index string, the list
of lists of characters which correspond to an index and are non-zero corresponding
to that index string. -/
def listCharIndexStringTolistCharIndex (l : List Char) (h : listCharIndexString X l) :
List ({lI : List Char // listCharIndex X lI ∧ lI ≠ []}) :=
if hl : l = [] then [] else
⟨listCharIndexStringHeadIndex X l, by
apply And.intro (listCharIndexStringHeadIndex_listCharIndex X l h)
simp [listCharIndexStringHeadIndex]
exact hl⟩ ::
(listCharIndexStringTolistCharIndex (listCharIndexStringDropHeadIndex X l)
(listCharIndexStringDropHeadIndex_listCharIndexString X l h))
termination_by l.length
decreasing_by
rename_i h1
simpa [InvImage, listCharIndexStringDropHeadIndex] using
dropWhile_isIndexSpecifier_length_lt X l hl
/-!
## Index and index strings
-/
/-- An index is a non-empty string satisfying the condtion `listCharIndex`,
e.g. `ᵘ¹²` or `ᵤ₄₃` etc. -/
def Index : Type := {s : String // listCharIndex X s.toList ∧ s.toList ≠ []}
namespace Index
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
/-- Creats an index from a non-empty list of characters satisfying `listCharIndex`. -/
def ofCharList (l : List Char) (h : listCharIndex X l ∧ l ≠ []) : Index X := ⟨l.asString, h⟩
instance : ToString (Index X) := ⟨fun i => i.val⟩
/-- Gets the first character in an index e.g. `ᵘ` as an element of `charList X`. -/
def head (s : Index X) : charList X :=
⟨s.val.toList.head (s.prop.2), by
have h := s.prop.1
have h2 := s.prop.2
simp [listCharIndex] at h
simp_all only [toList, ne_eq, Bool.not_eq_true, ↓reduceDIte]
simpa [isNotationChar] using h.1⟩
/-- The color associated to an index. -/
def toColor (s : Index X) : X := (IndexNotation.notaEquiv).invFun s.head
/-- A map from super and subscript numerical characters to the natural numbers,
returning `0` on all other characters. -/
def charToNat (c : Char) : Nat :=
match c with
| '₀' => 0
| '₁' => 1
| '₂' => 2
| '₃' => 3
| '₄' => 4
| '₅' => 5
| '₆' => 6
| '₇' => 7
| '₈' => 8
| '₉' => 9
| '⁰' => 0
| '¹' => 1
| '²' => 2
| '³' => 3
| '⁴' => 4
| '⁵' => 5
| '⁶' => 6
| '⁷' => 7
| '⁸' => 8
| '⁹' => 9
| _ => 0
/-- The numerical characters associated with an index. -/
def tail (s : Index X) : List Char := s.val.toList.tail
/-- The natural numbers assocaited with an index. -/
def tailNat (s : Index X) : List Nat := s.tail.map charToNat
/-- The id of an index, as a natural number. -/
def id (s : Index X) : Nat := s.tailNat.foldl (fun a b => 10 * a + b) 0
end Index
/-- A string of indices to be associated with a tensor.
E.g. `ᵘ⁰ᵤ₂₆₀ᵘ³`. -/
def IndexString : Type := {s : String // listCharIndexStringBool X s.toList = true}
namespace IndexString
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
/-- The character list associated with a index string. -/
def toCharList (s : IndexString X) : List Char := s.val.toList
/-- The char list of an index string satisfies `listCharIndexString`. -/
lemma listCharIndexString (s : IndexString X) : listCharIndexString X s.toCharList := by
rw [listCharIndexString_iff_bool]
exact s.prop
/-- The indices associated to an index string. -/
def toIndexList (s : IndexString X) : List (Index X) :=
(listCharIndexStringTolistCharIndex X s.toCharList (listCharIndexString s)).map
fun x => Index.ofCharList x.1 x.2
/-- The number of indices in an index string. -/
def numIndices (s : IndexString X) : Nat := s.toIndexList.length
/-- The map of from `Fin s.numIndices` into colors associated to an index string. -/
def colorMap (s : IndexString X) : Fin s.numIndices → X :=
fun i => (s.toIndexList.get i).toColor
/-- The map of from `Fin s.numIndices` into the natural numbers associated to an index string. -/
def idMap (s : IndexString X) : Fin s.numIndices → Nat :=
fun i => (s.toIndexList.get i).id
end IndexString
/-
def testIndex : Index realTensor.ColorType := ⟨"ᵘ¹", by decide⟩
def testIndexString : IndexString realTensor.ColorType := ⟨"ᵘ⁰ᵤ₂₆₀ᵘ³", by rfl⟩
#eval testIndexString.toIndexList.map Index.id
-/
end IndexNotation
open IndexNotation

View file

@ -1,74 +0,0 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.Real.Basic
import Init.NotationExtra
/-!
# Notation for Lorentz Tensors
This file is currently a stub.
We plan to set up index-notation for dealing with tensors.
Some examples:
- `ψᵘ¹ᵘ²φᵤ₁` should correspond to the contraction of the first index of `ψ` and the
only index of `φ`.
- `ψᵘ¹ᵘ² = ψᵘ²ᵘ¹` should define the symmetry of `ψ` under the exchange of its indices.
- `θᵤ₂(ψᵘ¹ᵘ²φᵤ₁) = (θᵤ₂ψᵘ¹ᵘ²)φᵤ₁` should correspond to an associativity properity of
contraction.
It should also be possible to define this generically for any `LorentzTensorStructure`.
Further we plan to make easy to define tensors with indices. E.g. `(ψ : Tenᵘ¹ᵘ²ᵤ₃)`
should correspond to a (real Lorentz) tensors with 3 indices, two upper and one lower.
For `(ψ : Tenᵘ¹ᵘ²ᵤ₃)`, if one writes e.g. `ψᵤ₁ᵘ²ᵤ₃`, this should correspond to a
lowering of the first index of `ψ`.
Further, it will be nice if we can have implicit contractions of indices
e.g. in Weyl fermions.
-/
open Lean
open Lean
open Lean.Parser
open Lean.Elab
open Lean.Elab.Command
variable {R : Type} [CommSemiring R]
class IndexNotation (𝓣 : TensorStructure R) where
nota : 𝓣.Color → Char
namespace IndexNotation
variable (𝓣 : TensorStructure R) [IndexNotation 𝓣]
variable [Fintype 𝓣.Color] [DecidableEq 𝓣.Color]
def IsIndexSpecifier (c : Char) : Bool :=
if ∃ (μ : 𝓣.Color), c = nota μ then true else false
def IsIndexId (c : Char) : Bool :=
if c = '₀' c = '₁' c = '₂' c = '₃' c = '₄' c = '₅' c = '₆'
c = '₇' c = '₈' c = '₉' c = '⁰' c = '¹' c = '²' c = '³' c = '⁴'
c = '⁵' c = '⁶' c = '⁷' c = '⁸' c = '⁹' then true else false
partial def takeWhileFnFstAux (n : ) (p1 : Char → Bool) (p : Char → Bool) : ParserFn := fun c s =>
let i := s.pos
if h : c.input.atEnd i then s
else if ¬ ((n = 0 ∧ p1 (c.input.get' i h)) (n ≠ 0 ∧ p (c.input.get' i h))) then s
else takeWhileFnFstAux n.succ p1 p c (s.next' c.input i h)
def takeWhileFnFst (p1 : Char → Bool) (p : Char → Bool) : ParserFn := takeWhileFnFstAux 0 p1 p
/-- Parser for index structures. -/
def indexParser : ParserFn := (takeWhileFnFst (IsIndexSpecifier 𝓣) IsIndexId)
def indexParserMany : ParserFn := Lean.Parser.many1Fn (indexParser 𝓣)
def singleTensorElab : Lean.Elab.Term.TermElab := fun stx expectedType => do
return mkNatLit 0
end IndexNotation

View file

@ -11,7 +11,6 @@ import HepLean.SpaceTime.LorentzTensor.MulActionTensor
# Real Lorentz tensors
-/
noncomputable section
open TensorProduct
open minkowskiMatrix
@ -29,8 +28,43 @@ inductive ColorType
| up
| down
def colorTypEquivFin1Fin1 : ColorType ≃ Fin 1 ⊕ Fin 1 where
toFun
| ColorType.up => Sum.inl ⟨0, Nat.zero_lt_one⟩
| ColorType.down => Sum.inr ⟨0, Nat.zero_lt_one⟩
invFun
| Sum.inl _ => ColorType.up
| Sum.inr _ => ColorType.down
left_inv := by
intro x
cases x
simp
simp
right_inv := by
intro x
cases x
simp
rename_i f
exact (Fin.fin_one_eq_zero f).symm
simp
rename_i f
exact (Fin.fin_one_eq_zero f).symm
instance : DecidableEq realTensor.ColorType :=
Equiv.decidableEq colorTypEquivFin1Fin1
instance : Fintype realTensor.ColorType where
elems := {realTensor.ColorType.up, realTensor.ColorType.down}
complete := by
intro x
cases x
simp
simp
end realTensor
noncomputable section
open realTensor
/-! TODO: Set up the notation `𝓛𝓣` or similar. -/
@ -88,6 +122,10 @@ def realLorentzTensor (d : ) : TensorStructure where
| realTensor.ColorType.up => asTenProd_contr_asCoTenProd
| realTensor.ColorType.down => asCoTenProd_contr_asTenProd
instance : Fintype (realLorentzTensor d).Color := realTensor.instFintypeColorType
instance : DecidableEq (realLorentzTensor d).Color := realTensor.instDecidableEqColorType
/-- The action of the Lorentz group on real Lorentz tensors. -/
instance : MulActionTensor (LorentzGroup d) (realLorentzTensor d) where
repColorModule μ :=