refactor: Linting

This commit is contained in:
jstoobysmith 2024-07-18 16:46:29 -04:00
parent 1233987bd7
commit 52e591fa7a
27 changed files with 53 additions and 57 deletions

View file

@ -42,7 +42,7 @@ def toSMPlusH : MSSMCharges.Charges ≃ (Fin 18 ⊕ Fin 2 → ) :=
/-- An equivalence between `Fin 18 ⊕ Fin 2 → ` and `(Fin 18 → ) × (Fin 2 → )`. -/
@[simps!]
def splitSMPlusH : (Fin 18 ⊕ Fin 2 → ) ≃ (Fin 18 → ) × (Fin 2 → ) where
toFun f := (f ∘ Sum.inl , f ∘ Sum.inr)
toFun f := (f ∘ Sum.inl, f ∘ Sum.inr)
invFun f := Sum.elim f.1 f.2
left_inv f := Sum.elim_comp_inl_inr f
right_inv _ := rfl
@ -473,8 +473,7 @@ def AnomalyFreeMk (S : MSSMACC.Charges) (hg : accGrav S = 0)
intro i
simp at i
match i with
| 0 => exact hquad
⟩ , by exact hcube ⟩
| 0 => exact hquad⟩, hcube⟩
lemma AnomalyFreeMk_val (S : MSSMACC.Charges) (hg : accGrav S = 0)
(hsu2 : accSU2 S = 0) (hsu3 : accSU3 S = 0) (hyy : accYY S = 0)
@ -490,8 +489,7 @@ def AnomalyFreeQuadMk' (S : MSSMACC.LinSols) (hquad : accQuad S.val = 0) :
intro i
simp at i
match i with
| 0 => exact hquad
| 0 => exact hquad⟩
/-- A `Sol` from a `LinSol` satisfying the quadratic and cubic ACCs. -/
@[simp]
@ -501,13 +499,12 @@ def AnomalyFreeMk' (S : MSSMACC.LinSols) (hquad : accQuad S.val = 0)
intro i
simp at i
match i with
| 0 => exact hquad
⟩ , by exact hcube ⟩
| 0 => exact hquad⟩, hcube⟩
/-- A `Sol` from a `QuadSol` satisfying the cubic ACCs. -/
@[simp]
def AnomalyFreeMk'' (S : MSSMACC.QuadSols) (hcube : accCube S.val = 0) : MSSMACC.Sols :=
⟨S , by exact hcube
⟨S, hcube⟩
lemma AnomalyFreeMk''_val (S : MSSMACC.QuadSols)
(hcube : accCube S.val = 0) :

View file

@ -52,7 +52,7 @@ lemma planeY₃B₃_val_eq' (R : MSSMACC.AnomalyFreePerp) (a b c : ) (hR' : R
rw [planeY₃B₃_val, planeY₃B₃_val] at h
have h1 := congrArg (fun S => dot Y₃.val S) h
have h2 := congrArg (fun S => dot B₃.val S) h
simp only [ Fin.isValue, ACCSystemCharges.chargesAddCommMonoid_add, Fin.reduceFinMk] at h1 h2
simp only [Fin.isValue, ACCSystemCharges.chargesAddCommMonoid_add, Fin.reduceFinMk] at h1 h2
erw [dot.map_add₂, dot.map_add₂] at h1 h2
erw [dot.map_add₂ Y₃.val (a' • Y₃.val + b' • B₃.val) (c' • R.val)] at h1
erw [dot.map_add₂ B₃.val (a' • Y₃.val + b' • B₃.val) (c' • R.val)] at h2

View file

@ -105,7 +105,7 @@ lemma inQuadSolProp_iff_quadCoeff_zero (T : MSSMACC.Sols) : InQuadSolProp T ↔
intro h
rw [quadCoeff] at h
rw [show dot Y₃.val B₃.val = 108 by rfl] at h
simp only [ Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
simp only [Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
not_false_eq_true, pow_eq_zero_iff, or_self, false_or] at h
apply (add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)).mp at h
simp only [Fin.isValue, Fin.reduceFinMk, ne_eq, OfNat.ofNat_ne_zero,
@ -124,7 +124,7 @@ lemma inQuadSolProp_iff_proj_inQuadProp (R : MSSMACC.Sols) :
simp only [Fin.isValue, Fin.reduceFinMk, mul_zero, add_zero, and_self]
intro h
rw [show dot Y₃.val B₃.val = 108 by rfl] at h
simp only [Fin.isValue, Fin.reduceFinMk , mul_eq_zero,
simp only [Fin.isValue, Fin.reduceFinMk, mul_eq_zero,
OfNat.ofNat_ne_zero, or_self, false_or] at h
rw [h.2.1, h.2.2]
simp
@ -159,7 +159,7 @@ lemma inCubeSolProp_iff_cubicCoeff_zero (T : MSSMACC.Sols) :
intro h
rw [cubicCoeff] at h
rw [show dot Y₃.val B₃.val = 108 by rfl] at h
simp only [ Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
simp only [Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
not_false_eq_true, pow_eq_zero_iff, or_self, false_or] at h
apply (add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)).mp at h
simp only [Fin.isValue, Fin.reduceFinMk, ne_eq, OfNat.ofNat_ne_zero,
@ -232,7 +232,7 @@ lemma toSolNSQuad_eq_planeY₃B₃_on_α (R : MSSMACC.AnomalyFreePerp) :
/-- Given an `R` perpendicular to `Y₃` and `B₃`, an element of `Sols`. This map is
not surjective. -/
def toSolNS : MSSMACC.AnomalyFreePerp × × × → MSSMACC.Sols := fun (R, a, _ , _) =>
def toSolNS : MSSMACC.AnomalyFreePerp × × × → MSSMACC.Sols := fun (R, a, _, _) =>
a • AnomalyFreeMk'' (toSolNSQuad R) (toSolNSQuad_cube R)
/-- A map from `Sols` to `MSSMACC.AnomalyFreePerp × × × ` which on elements of
@ -268,7 +268,7 @@ def inLineEqToSol : InLineEq × × × → MSSMACC.Sols := fun (R, c
/-- On elements of `inLineEqSol` a right-inverse to `inLineEqSol`. -/
def inLineEqProj (T : InLineEqSol) : InLineEq × × × :=
(⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1 ⟩,
(⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1⟩,
(quadCoeff T.val)⁻¹ * quadBiLin B₃.val T.val.val,
(quadCoeff T.val)⁻¹ * (- quadBiLin Y₃.val T.val.val),
(quadCoeff T.val)⁻¹ * (
@ -319,7 +319,7 @@ lemma inQuadToSol_smul (R : InQuad) (c₁ c₂ c₃ d : ) :
/-- On elements of `inQuadSol` a right-inverse to `inQuadToSol`. -/
def inQuadProj (T : InQuadSol) : InQuad × × × :=
(⟨⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1 ⟩,
(⟨⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1⟩,
(inQuadSolProp_iff_proj_inQuadProp T.val).mp T.prop.2.1⟩,
(cubicCoeff T.val)⁻¹ * (cubeTriLin T.val.val T.val.val B₃.val),
(cubicCoeff T.val)⁻¹ * (- cubeTriLin T.val.val T.val.val Y₃.val),
@ -368,7 +368,7 @@ lemma inQuadCubeToSol_smul (R : InQuadCube) (c₁ c₂ c₃ d : ) :
/-- On elements of `inQuadCubeSol` a right-inverse to `inQuadCubeToSol`. -/
def inQuadCubeProj (T : InQuadCubeSol) : InQuadCube × × × :=
(⟨⟨⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1 ⟩,
(⟨⟨⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1⟩,
(inQuadSolProp_iff_proj_inQuadProp T.val).mp T.prop.2.1⟩,
(inCubeSolProp_iff_proj_inCubeProp T.val).mp T.prop.2.2⟩,
(dot Y₃.val B₃.val)⁻¹ * (dot Y₃.val T.val.val - dot B₃.val T.val.val),

View file

@ -67,7 +67,7 @@ def repCharges : Representation PermGroup (MSSMCharges).Charges where
rw [charges_eq_toSpecies_eq]
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
intro i
simp only [ Pi.mul_apply, Pi.inv_apply, Equiv.Perm.coe_mul, LinearMap.mul_apply]
simp only [Pi.mul_apply, Pi.inv_apply, Equiv.Perm.coe_mul, LinearMap.mul_apply]
rw [chargeMap_toSpecies, chargeMap_toSpecies]
simp only [Pi.mul_apply, Pi.inv_apply]
rw [chargeMap_toSpecies]