refactor: Linting
This commit is contained in:
parent
1233987bd7
commit
52e591fa7a
27 changed files with 53 additions and 57 deletions
|
@ -105,7 +105,7 @@ lemma inQuadSolProp_iff_quadCoeff_zero (T : MSSMACC.Sols) : InQuadSolProp T ↔
|
|||
intro h
|
||||
rw [quadCoeff] at h
|
||||
rw [show dot Y₃.val B₃.val = 108 by rfl] at h
|
||||
simp only [ Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
|
||||
simp only [Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
|
||||
not_false_eq_true, pow_eq_zero_iff, or_self, false_or] at h
|
||||
apply (add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)).mp at h
|
||||
simp only [Fin.isValue, Fin.reduceFinMk, ne_eq, OfNat.ofNat_ne_zero,
|
||||
|
@ -124,7 +124,7 @@ lemma inQuadSolProp_iff_proj_inQuadProp (R : MSSMACC.Sols) :
|
|||
simp only [Fin.isValue, Fin.reduceFinMk, mul_zero, add_zero, and_self]
|
||||
intro h
|
||||
rw [show dot Y₃.val B₃.val = 108 by rfl] at h
|
||||
simp only [Fin.isValue, Fin.reduceFinMk , mul_eq_zero,
|
||||
simp only [Fin.isValue, Fin.reduceFinMk, mul_eq_zero,
|
||||
OfNat.ofNat_ne_zero, or_self, false_or] at h
|
||||
rw [h.2.1, h.2.2]
|
||||
simp
|
||||
|
@ -159,7 +159,7 @@ lemma inCubeSolProp_iff_cubicCoeff_zero (T : MSSMACC.Sols) :
|
|||
intro h
|
||||
rw [cubicCoeff] at h
|
||||
rw [show dot Y₃.val B₃.val = 108 by rfl] at h
|
||||
simp only [ Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
|
||||
simp only [Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero, ne_eq,
|
||||
not_false_eq_true, pow_eq_zero_iff, or_self, false_or] at h
|
||||
apply (add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)).mp at h
|
||||
simp only [Fin.isValue, Fin.reduceFinMk, ne_eq, OfNat.ofNat_ne_zero,
|
||||
|
@ -232,7 +232,7 @@ lemma toSolNSQuad_eq_planeY₃B₃_on_α (R : MSSMACC.AnomalyFreePerp) :
|
|||
|
||||
/-- Given an `R` perpendicular to `Y₃` and `B₃`, an element of `Sols`. This map is
|
||||
not surjective. -/
|
||||
def toSolNS : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a, _ , _) =>
|
||||
def toSolNS : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a, _, _) =>
|
||||
a • AnomalyFreeMk'' (toSolNSQuad R) (toSolNSQuad_cube R)
|
||||
|
||||
/-- A map from `Sols` to `MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ` which on elements of
|
||||
|
@ -268,7 +268,7 @@ def inLineEqToSol : InLineEq × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, c
|
|||
|
||||
/-- On elements of `inLineEqSol` a right-inverse to `inLineEqSol`. -/
|
||||
def inLineEqProj (T : InLineEqSol) : InLineEq × ℚ × ℚ × ℚ :=
|
||||
(⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1 ⟩,
|
||||
(⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1⟩,
|
||||
(quadCoeff T.val)⁻¹ * quadBiLin B₃.val T.val.val,
|
||||
(quadCoeff T.val)⁻¹ * (- quadBiLin Y₃.val T.val.val),
|
||||
(quadCoeff T.val)⁻¹ * (
|
||||
|
@ -319,7 +319,7 @@ lemma inQuadToSol_smul (R : InQuad) (c₁ c₂ c₃ d : ℚ) :
|
|||
|
||||
/-- On elements of `inQuadSol` a right-inverse to `inQuadToSol`. -/
|
||||
def inQuadProj (T : InQuadSol) : InQuad × ℚ × ℚ × ℚ :=
|
||||
(⟨⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1 ⟩,
|
||||
(⟨⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1⟩,
|
||||
(inQuadSolProp_iff_proj_inQuadProp T.val).mp T.prop.2.1⟩,
|
||||
(cubicCoeff T.val)⁻¹ * (cubeTriLin T.val.val T.val.val B₃.val),
|
||||
(cubicCoeff T.val)⁻¹ * (- cubeTriLin T.val.val T.val.val Y₃.val),
|
||||
|
@ -368,7 +368,7 @@ lemma inQuadCubeToSol_smul (R : InQuadCube) (c₁ c₂ c₃ d : ℚ) :
|
|||
|
||||
/-- On elements of `inQuadCubeSol` a right-inverse to `inQuadCubeToSol`. -/
|
||||
def inQuadCubeProj (T : InQuadCubeSol) : InQuadCube × ℚ × ℚ × ℚ :=
|
||||
(⟨⟨⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1 ⟩,
|
||||
(⟨⟨⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1⟩,
|
||||
(inQuadSolProp_iff_proj_inQuadProp T.val).mp T.prop.2.1⟩,
|
||||
(inCubeSolProp_iff_proj_inCubeProp T.val).mp T.prop.2.2⟩,
|
||||
(dot Y₃.val B₃.val)⁻¹ * (dot Y₃.val T.val.val - dot B₃.val T.val.val),
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue