refactor: Linting

This commit is contained in:
jstoobysmith 2024-07-18 16:46:29 -04:00
parent 1233987bd7
commit 52e591fa7a
27 changed files with 53 additions and 57 deletions

View file

@ -658,7 +658,7 @@ noncomputable def basisaAsBasis :
basisOfLinearIndependentOfCardEqFinrank (@basisa_linear_independent n) basisa_card
lemma span_basis (S : (PureU1 (2 * n.succ + 1)).LinSols) :
∃ (g f : Fin n.succ → ) , S.val = P g + P! f := by
∃ (g f : Fin n.succ → ), S.val = P g + P! f := by
have h := (mem_span_range_iff_exists_fun ).mp (Basis.mem_span basisaAsBasis S)
obtain ⟨f, hf⟩ := h
simp [basisaAsBasis] at hf

View file

@ -37,11 +37,11 @@ open VectorLikeOddPlane
/-- A property on `LinSols`, satisfied if every point on the line between the two planes
in the basis through that point is in the cubic. -/
def LineInCubic (S : (PureU1 (2 * n + 1)).LinSols) : Prop :=
∀ (g f : Fin n → ) (_ : S.val = Pa g f) (a b : ) ,
∀ (g f : Fin n → ) (_ : S.val = Pa g f) (a b : ),
accCube (2 * n + 1) (a • P g + b • P! f) = 0
lemma lineInCubic_expand {S : (PureU1 (2 * n + 1)).LinSols} (h : LineInCubic S) :
∀ (g : Fin n → ) (f : Fin n → ) (_ : S.val = P g + P! f) (a b : ) ,
∀ (g : Fin n → ) (f : Fin n → ) (_ : S.val = P g + P! f) (a b : ),
3 * a * b * (a * accCubeTriLinSymm (P g) (P g) (P! f)
+ b * accCubeTriLinSymm (P! f) (P! f) (P g)) = 0 := by
intro g f hS a b
@ -85,7 +85,7 @@ lemma lineInCubicPerm_permute {S : (PureU1 (2 * n + 1)).LinSols}
lemma lineInCubicPerm_swap {S : (PureU1 (2 * n.succ + 1)).LinSols}
(LIC : LineInCubicPerm S) :
∀ (j : Fin n.succ) (g f : Fin n.succ → ) (_ : S.val = Pa g f) ,
∀ (j : Fin n.succ) (g f : Fin n.succ → ) (_ : S.val = Pa g f),
(S.val (δ!₂ j) - S.val (δ!₁ j))
* accCubeTriLinSymm (P g) (P g) (basis!AsCharges j) = 0 := by
intro j g f h

View file

@ -78,7 +78,7 @@ lemma anomalyFree_param {S : (PureU1 (2 * n + 1)).Sols}
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) ≠ 0`.
In this case our parameterization above will be able to recover this point. -/
def GenericCase (S : (PureU1 (2 * n.succ + 1)).Sols) : Prop :=
∀ (g f : Fin n.succ → ) (_ : S.val = P g + P! f) ,
∀ (g f : Fin n.succ → ) (_ : S.val = P g + P! f),
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0
lemma genericCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
@ -94,7 +94,7 @@ lemma genericCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) ≠ 0`.
In this case we will show that S is zero if it is true for all permutations. -/
def SpecialCase (S : (PureU1 (2 * n.succ + 1)).Sols) : Prop :=
∀ (g f : Fin n.succ → ) (_ : S.val = P g + P! f) ,
∀ (g f : Fin n.succ → ) (_ : S.val = P g + P! f),
accCubeTriLinSymm (P g) (P g) (P! f) = 0
lemma specialCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)