feat: Examples of informal_lemmas

This commit is contained in:
jstoobysmith 2024-09-13 10:46:30 -04:00
parent d39f86cc36
commit 5327c2249f
2 changed files with 13 additions and 0 deletions

View file

@ -11,6 +11,7 @@ import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Geometry.Manifold.ContMDiff.Product
import HepLean.Meta.InformalDef
/-!
# The Higgs field
@ -173,6 +174,11 @@ def ofReal (a : ) : HiggsField := (HiggsVec.ofReal a).toField
/-- The higgs field which is all zero. -/
def zero : HiggsField := ofReal 0
informal_lemma zero_is_zero_section where
physics := "The zero Higgs field is the zero section of the Higgs bundle."
math := "The HiggsField `zero` defined by `ofReal 0`
is the constant zero-section of the bundle `HiggsBundle`."
end HiggsField
end

View file

@ -5,6 +5,7 @@ Authors: Joseph Tooby-Smith
-/
import Mathlib.Algebra.QuadraticDiscriminant
import HepLean.StandardModel.HiggsBoson.PointwiseInnerProd
import HepLean.Meta.InformalDef
/-!
# The potential of the Higgs field
@ -314,6 +315,12 @@ lemma isBounded_of_𝓵_pos (h : 0 < P.𝓵) : P.IsBounded := by
have h2' := h2 φ x
linarith
informal_lemma isBounded_iff_of_𝓵_zero where
physics := "When there is no quartic coupling, the potential is bounded iff the mass squared is
non-positive."
math := "For `P : Potential` then P.IsBounded if and only if P.μ2 ≤ 0.
That is to say `- P.μ2 * ‖φ‖_H ^ 2 x` is bounded below if and only if `P.μ2 ≤ 0`."
/-!
## Minimum and maximum