refactor: Lint

This commit is contained in:
jstoobysmith 2025-01-28 09:58:02 +00:00
parent bcc7d8244c
commit 5377679da6
4 changed files with 33 additions and 32 deletions

View file

@ -44,10 +44,10 @@ lemma bosonicProj_of_mem_bosonic (a : 𝓕.CrAnAlgebra) (h : a ∈ statisticSubm
change p a h
apply Submodule.span_induction
· intro x hx
simp at hx
simp only [Set.mem_setOf_eq] at hx
obtain ⟨φs, rfl, h⟩ := hx
simp [p, bosonicProj_ofCrAnList, h]
· simp [p]
· simp only [map_zero, p]
rfl
· intro x y hx hy hpx hpy
simp_all [p]
@ -61,7 +61,7 @@ lemma bosonicProj_of_mem_fermionic (a : 𝓕.CrAnAlgebra) (h : a ∈ statisticSu
change p a h
apply Submodule.span_induction
· intro x hx
simp at hx
simp only [Set.mem_setOf_eq] at hx
obtain ⟨φs, rfl, h⟩ := hx
simp [p, bosonicProj_ofCrAnList, h]
· simp [p]
@ -103,7 +103,7 @@ lemma fermionicProj_ofCrAnList_if_bosonic (φs : List 𝓕.CrAnStates) :
rw [fermionicProj_ofCrAnList]
by_cases h1 : (𝓕 |>ₛ φs) = fermionic
· simp [h1]
· simp [h1]
· simp only [h1, ↓reduceDIte]
simp only [neq_fermionic_iff_eq_bosonic] at h1
simp [h1]
@ -114,10 +114,10 @@ lemma fermionicProj_of_mem_fermionic (a : 𝓕.CrAnAlgebra) (h : a ∈ statistic
change p a h
apply Submodule.span_induction
· intro x hx
simp at hx
simp only [Set.mem_setOf_eq] at hx
obtain ⟨φs, rfl, h⟩ := hx
simp [p, fermionicProj_ofCrAnList, h]
· simp [p]
· simp only [map_zero, p]
rfl
· intro x y hx hy hpx hpy
simp_all [p]
@ -131,7 +131,7 @@ lemma fermionicProj_of_mem_bosonic (a : 𝓕.CrAnAlgebra) (h : a ∈ statisticSu
change p a h
apply Submodule.span_induction
· intro x hx
simp at hx
simp only [Set.mem_setOf_eq] at hx
obtain ⟨φs, rfl, h⟩ := hx
simp [p, fermionicProj_ofCrAnList, h]
· simp [p]
@ -161,7 +161,8 @@ lemma bosonicProj_add_fermionicProj (a : 𝓕.CrAnAlgebra) :
(statisticSubmodule fermionic).subtype ∘ₗ fermionicProj
change (f1 + f2) a = LinearMap.id (R := ) a
refine LinearMap.congr_fun (ofCrAnListBasis.ext fun φs ↦ ?_) a
simp [f1, f2]
simp only [ofListBasis_eq_ofList, LinearMap.add_apply, LinearMap.coe_comp, Submodule.coe_subtype,
Function.comp_apply, LinearMap.id_coe, id_eq, f1, f2]
rw [bosonicProj_ofCrAnList, fermionicProj_ofCrAnList_if_bosonic]
by_cases h : (𝓕 |>ₛ φs) = bosonic
· simp [h]
@ -176,13 +177,13 @@ lemma coeAddMonoidHom_apply_eq_bosonic_plus_fermionic
apply DirectSum.induction_on
· simp [C]
· intro i x
simp [C]
simp only [DFinsupp.toFun_eq_coe, DirectSum.coeAddMonoidHom_of, C]
rw [DirectSum.of_apply, DirectSum.of_apply]
match i with
| bosonic => simp
| fermionic => simp
· intro x y hx hy
simp_all [C]
simp_all only [C, DFinsupp.toFun_eq_coe, map_add, DirectSum.add_apply, Submodule.coe_add]
abel
lemma directSum_eq_bosonic_plus_fermionic
@ -196,30 +197,30 @@ lemma directSum_eq_bosonic_plus_fermionic
apply DirectSum.induction_on
· simp [C]
· intro i x
simp [C]
simp only [C]
match i with
| bosonic =>
simp only [DirectSum.of_eq_same, self_eq_add_right]
rw [DirectSum.of_eq_of_ne]
simp
simp only [map_zero]
simp
| fermionic =>
simp only [DirectSum.of_eq_same, add_zero]
rw [DirectSum.of_eq_of_ne]
simp
simp only [map_zero, zero_add]
simp
· intro x y hx hy
simp [C] at hx hy ⊢
simp only [DirectSum.add_apply, map_add, C] at hx hy ⊢
conv_lhs => rw [hx, hy]
abel
instance : GradedAlgebra (A := 𝓕.CrAnAlgebra) statisticSubmodule where
one_mem := by
simp [statisticSubmodule]
simp only [statisticSubmodule]
refine Submodule.mem_span.mpr fun p a => a ?_
simp
simp only [Set.mem_setOf_eq]
use []
simp
simp only [ofCrAnList_nil, ofList_empty, true_and]
rfl
mul_mem f1 f2 a1 a2 h1 h2 := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule f2) : Prop :=
@ -227,36 +228,36 @@ instance : GradedAlgebra (A := 𝓕.CrAnAlgebra) statisticSubmodule where
change p a2 h2
apply Submodule.span_induction (p := p)
· intro x hx
simp at hx
simp only [Set.mem_setOf_eq] at hx
obtain ⟨φs, rfl, h⟩ := hx
simp [p]
simp only [p]
let p (a1 : 𝓕.CrAnAlgebra) (hx : a1 ∈ statisticSubmodule f1) : Prop :=
a1 * ofCrAnList φs ∈ statisticSubmodule (f1 + f2)
change p a1 h1
apply Submodule.span_induction (p := p)
· intro y hy
obtain ⟨φs', rfl, h'⟩ := hy
simp [p]
simp only [p]
rw [← ofCrAnList_append]
refine Submodule.mem_span.mpr fun p a => a ?_
simp
simp only [Set.mem_setOf_eq]
use φs' ++ φs
simp [h, h']
simp only [ofList_append, h', h, true_and]
cases f1 <;> cases f2 <;> rfl
· simp [p]
· intro x y hx hy hx1 hx2
simp [p, add_mul]
simp only [add_mul, p]
exact Submodule.add_mem _ hx1 hx2
· intro c a hx h1
simp [p, mul_smul]
simp only [Algebra.smul_mul_assoc, p]
exact Submodule.smul_mem _ _ h1
· exact h1
· simp [p]
· intro x y hx hy hx1 hx2
simp [p, mul_add]
simp only [mul_add, p]
exact Submodule.add_mem _ hx1 hx2
· intro c a hx h1
simp [p, mul_smul]
simp only [Algebra.mul_smul_comm, p]
exact Submodule.smul_mem _ _ h1
· exact h2
decompose' a := DirectSum.of (fun i => (statisticSubmodule (𝓕 := 𝓕) i)) bosonic (bosonicProj a)
@ -267,7 +268,9 @@ instance : GradedAlgebra (A := 𝓕.CrAnAlgebra) statisticSubmodule where
· exact bosonicProj_add_fermionicProj a
right_inv a := by
rw [coeAddMonoidHom_apply_eq_bosonic_plus_fermionic]
simp
simp only [DFinsupp.toFun_eq_coe, map_add, bosonicProj_of_bonosic_part,
bosonicProj_of_fermionic_part, add_zero, fermionicProj_of_bosonic_part,
fermionicProj_of_fermionic_part, zero_add]
conv_rhs => rw [directSum_eq_bosonic_plus_fermionic a]
end

View file

@ -303,7 +303,6 @@ lemma orderedInsert_swap_eq_time {φ ψ : 𝓕.CrAnStates}
intro y hy
simpa using List.mem_takeWhile_imp hy
lemma orderedInsert_in_swap_eq_time {φ ψ φ': 𝓕.CrAnStates} (h1 : crAnTimeOrderRel φ ψ)
(h2 : crAnTimeOrderRel ψ φ) : (φs φs' : List 𝓕.CrAnStates) → ∃ l1 l2,
List.orderedInsert crAnTimeOrderRel φ' (φs ++ φ :: ψ :: φs') = l1 ++ φ :: ψ :: l2 ∧

View file

@ -282,7 +282,7 @@ lemma ofList_take_insertIdx_le (n m : ) (φ1 : 𝓕) (φs : List 𝓕) (hn :
· exact hn
· exact hm
/-- The instance of an addative monoid on `FieldStatistic`. -/
instance : AddMonoid FieldStatistic where
zero := bosonic
add a b := a * b
@ -293,14 +293,12 @@ instance : AddMonoid FieldStatistic where
cases a <;> simp <;> rfl
add_assoc a b c := by
cases a <;> cases b <;> cases c <;> simp <;> rfl
nsmul_zero a := by
nsmul_zero a := by
simp only [Finset.univ_eq_empty, Finset.prod_const, instCommGroup, Finset.card_empty, pow_zero]
rfl
nsmul_succ a n := by
simp only [instCommGroup, Finset.prod_const, Finset.card_univ, Fintype.card_fin]
rfl
end ofListTake
end FieldStatistic