refactor: Lint
This commit is contained in:
parent
c6f4448bc8
commit
53a19dbe71
6 changed files with 55 additions and 37 deletions
|
@ -68,8 +68,8 @@ lemma η_apply_mul_η_apply_diag (μ : Fin 1 ⊕ Fin d) : η μ μ * η μ μ =
|
|||
| Sum.inl _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||||
| Sum.inr _ => simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
|
||||
|
||||
lemma as_block : @minkowskiMatrix d = (
|
||||
Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ℝ) 0 0 (-1 : Matrix (Fin d) (Fin d) ℝ)) := by
|
||||
lemma as_block : @minkowskiMatrix d =
|
||||
Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ℝ) 0 0 (-1 : Matrix (Fin d) (Fin d) ℝ) := by
|
||||
rw [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, ← fromBlocks_diagonal]
|
||||
refine fromBlocks_inj.mpr ?_
|
||||
simp only [diagonal_one, true_and]
|
||||
|
|
|
@ -121,8 +121,8 @@ def asConsTensor : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ leftHanded ⊗
|
|||
Function.comp_apply]
|
||||
let x' : ℂ := x
|
||||
change x' • asTensor =
|
||||
(TensorProduct.map (complexContr.ρ M) (
|
||||
TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M))) (x' • asTensor)
|
||||
(TensorProduct.map (complexContr.ρ M)
|
||||
(TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M))) (x' • asTensor)
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||||
apply congrArg
|
||||
nth_rewrite 2 [asTensor]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue