lemma: Contract with unitTensor
This commit is contained in:
parent
c02f84c45e
commit
5603a67642
3 changed files with 211 additions and 1 deletions
|
@ -276,6 +276,26 @@ lemma rep_iso_hom_inv_apply (x y : Rep k G) (f : x ≅ y) (i : y) :
|
|||
change (f.inv ≫ f.hom).hom i = i
|
||||
simp
|
||||
|
||||
lemma rep_iso_apply_iff (x y : Rep k G) (f : x ≅ y) (i : x) (j : y) :
|
||||
f.hom.hom i = j ↔ i = f.inv.hom j := by
|
||||
apply Iff.intro
|
||||
· intro a
|
||||
subst a
|
||||
simp_all only [rep_iso_inv_hom_apply]
|
||||
· intro a
|
||||
subst a
|
||||
exact rep_iso_hom_inv_apply x y f j
|
||||
|
||||
lemma rep_iso_inv_apply_iff (x y : Rep k G) (f : x ≅ y) (i : y) (j : x) :
|
||||
f.inv.hom i = j ↔ i = f.hom.hom j := by
|
||||
apply Iff.intro
|
||||
· intro a
|
||||
subst a
|
||||
simp_all only [rep_iso_hom_inv_apply]
|
||||
· intro a
|
||||
subst a
|
||||
simp_all only [rep_iso_inv_hom_apply]
|
||||
|
||||
end
|
||||
end Discrete
|
||||
end OverColor
|
||||
|
|
|
@ -3,7 +3,9 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.TensorSpecies.UnitTensor
|
||||
import HepLean.Tensors.Tree.Elab
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Congr
|
||||
/-!
|
||||
|
||||
## Contraction of specific tensor types
|
||||
|
@ -23,6 +25,165 @@ open TensorTree
|
|||
|
||||
variable {S : TensorSpecies}
|
||||
|
||||
def contrOneTwoLeft {c1 c2 : S.C}
|
||||
(x : S.F.obj (OverColor.mk ![c1])) (y : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
|
||||
S.F.obj (OverColor.mk ![c2]) :=
|
||||
(S.F.map (OverColor.mkIso (by funext x; fin_cases x; rfl)).hom).hom <|
|
||||
(OverColor.forgetLiftApp S.FD c2).inv.hom <|
|
||||
(λ_ (S.FD.obj (Discrete.mk c2))).hom.hom <|
|
||||
((S.contr.app (Discrete.mk c1)) ▷ (S.FD.obj (Discrete.mk (c2 )))).hom <|
|
||||
(α_ _ _ (S.FD.obj (Discrete.mk (c2 )))).inv.hom <|
|
||||
(OverColor.forgetLiftApp S.FD c1).hom.hom ((S.F.map (OverColor.mkIso (by
|
||||
funext x; fin_cases x; rfl)).hom).hom x) ⊗ₜ
|
||||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y
|
||||
|
||||
@[simp]
|
||||
lemma contrOneTwoLeft_smul_left {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
|
||||
(y : S.F.obj (OverColor.mk ![S.τ c1, c2])) (r : S.k) :
|
||||
contrOneTwoLeft (r • x) y = r • contrOneTwoLeft x y := by
|
||||
simp only [contrOneTwoLeft]
|
||||
simp [map_smul, smul_tmul]
|
||||
|
||||
@[simp]
|
||||
lemma contrOneTwoLeft_smul_right {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
|
||||
(y : S.F.obj (OverColor.mk ![S.τ c1, c2])) (r : S.k) :
|
||||
contrOneTwoLeft x (r • y) = r • contrOneTwoLeft x y := by
|
||||
simp only [contrOneTwoLeft]
|
||||
simp [map_smul, smul_tmul]
|
||||
|
||||
@[simp]
|
||||
lemma contrOneTwoLeft_add_left {c1 c2 : S.C} (x y : S.F.obj (OverColor.mk ![c1]))
|
||||
(z : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
|
||||
contrOneTwoLeft (x + y) z = contrOneTwoLeft x z + contrOneTwoLeft y z := by
|
||||
simp only [contrOneTwoLeft]
|
||||
simp [map_add, add_tmul]
|
||||
|
||||
@[simp]
|
||||
lemma contrOneTwoLeft_add_right {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
|
||||
(y z : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
|
||||
contrOneTwoLeft x (y + z) = contrOneTwoLeft x y + contrOneTwoLeft x z := by
|
||||
simp only [contrOneTwoLeft]
|
||||
simp [map_add, add_tmul, tmul_add]
|
||||
|
||||
lemma contrOneTwoLeft_tprod_eq {c1 c2 : S.C}
|
||||
(fx : (i : (𝟭 Type).obj (OverColor.mk ![c1]).left) →
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![c1]).hom i }))
|
||||
(fy : (i : (𝟭 Type).obj (OverColor.mk ![S.τ c1, c2]).left)
|
||||
→ CoeSort.coe (S.FD.obj { as := (OverColor.mk ![S.τ c1, c2]).hom i })) :
|
||||
contrOneTwoLeft (PiTensorProduct.tprod S.k fx) (PiTensorProduct.tprod S.k fy) =
|
||||
(S.F.map (OverColor.mkIso (by funext x; fin_cases x; rfl)).hom).hom
|
||||
((OverColor.forgetLiftApp S.FD c2).inv.hom (
|
||||
((S.contr.app (Discrete.mk c1)).hom (fx (0 : Fin 1) ⊗ₜ fy (0 : Fin 2)) •
|
||||
fy (1 : Fin 2)))) := by
|
||||
rw [contrOneTwoLeft]
|
||||
apply congrArg
|
||||
apply congrArg
|
||||
rw [Discrete.pairIsoSep_inv_tprod S.FD fy]
|
||||
change (S.contr.app { as := c1 }).hom (_ ⊗ₜ[S.k] fy (0 : Fin 2)) • fy (1 : Fin 2) = _
|
||||
congr
|
||||
simp
|
||||
rw [forgetLiftApp_hom_hom_apply_eq]
|
||||
simp [S.F_def]
|
||||
erw [OverColor.lift.map_tprod]
|
||||
congr
|
||||
funext x
|
||||
match x with
|
||||
| (0 : Fin 1) =>
|
||||
simp [lift.discreteFunctorMapEqIso]
|
||||
rfl
|
||||
|
||||
lemma contr_one_two_left_eq_contrOneTwoLeft_tprod {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
|
||||
(y : S.F.obj (OverColor.mk ![S.τ c1, c2]))
|
||||
(fx : (i : (𝟭 Type).obj (OverColor.mk ![c1]).left) →
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![c1]).hom i }))
|
||||
(fy : (i : (𝟭 Type).obj (OverColor.mk ![S.τ c1, c2]).left)
|
||||
→ CoeSort.coe (S.FD.obj { as := (OverColor.mk ![S.τ c1, c2]).hom i }))
|
||||
(hx : x = PiTensorProduct.tprod S.k fx)
|
||||
(hy : y = PiTensorProduct.tprod S.k fy) :
|
||||
{x | μ ⊗ y | μ ν}ᵀ.tensor = (S.F.mapIso (OverColor.mkIso (by funext x; fin_cases x; rfl))).hom.hom
|
||||
(contrOneTwoLeft x y) := by
|
||||
subst hx
|
||||
subst hy
|
||||
conv_rhs =>
|
||||
rw [contrOneTwoLeft_tprod_eq]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, mk_left,
|
||||
Functor.id_obj, mk_hom, contr_tensor, prod_tensor, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, tensorNode_tensor, Monoidal.tensorUnit_obj,
|
||||
Action.instMonoidalCategory_tensorUnit_V, Matrix.cons_val_one, Matrix.head_cons,
|
||||
Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, map_smul]
|
||||
conv_lhs =>
|
||||
erw [OverColor.lift.μ_tmul_tprod S.FD]
|
||||
simp only [S.F_def]
|
||||
erw [OverColor.lift.map_tprod]
|
||||
erw [contrMap_tprod]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, mk_left,
|
||||
Functor.id_obj, mk_hom, Function.comp_apply, Monoidal.tensorUnit_obj,
|
||||
Action.instMonoidalCategory_tensorUnit_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Functor.comp_obj, Discrete.functor_obj_eq_as, equivToIso_homToEquiv,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, Fin.zero_succAbove, Fin.succ_zero_eq_one,
|
||||
eqToHom_refl, Discrete.functor_map_id, Action.id_hom]
|
||||
congr 1
|
||||
/- The contraction. -/
|
||||
· congr
|
||||
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
|
||||
Function.comp_apply, Action.FunctorCategoryEquivalence.functor_obj_obj, mk_hom,
|
||||
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
|
||||
Function.comp_apply, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Nat.reduceAdd, eqToHom_refl,
|
||||
Discrete.functor_map_id, Action.id_hom, mk_hom, equivToIso_homToEquiv,
|
||||
lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Iso.refl_inv,
|
||||
Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
/- The tensor. -/
|
||||
· symm
|
||||
rw [OverColor.Discrete.rep_iso_apply_iff]
|
||||
erw [OverColor.lift.map_tprod]
|
||||
erw [OverColor.lift.map_tprod]
|
||||
apply congrArg
|
||||
funext x
|
||||
match x with
|
||||
| (0 : Fin 1) =>
|
||||
simp only [mk_left, Fin.zero_eta, List.pmap.eq_1, Matrix.cons_val_zero, equivToIso_mkIso_hom,
|
||||
Equiv.refl_symm, Equiv.refl_apply, lift.discreteFunctorMapEqIso, eqToIso_refl,
|
||||
Functor.mapIso_refl, Iso.refl_inv, LinearEquiv.ofLinear_apply,
|
||||
Function.comp_apply, equivToIso_mkIso_inv, Fin.succ_zero_eq_one, Fin.succ_one_eq_two]
|
||||
rfl
|
||||
|
||||
lemma contr_one_two_left_eq_contrOneTwoLeft {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
|
||||
(y : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
|
||||
{x | μ ⊗ y | μ ν}ᵀ.tensor = (S.F.map (OverColor.mkIso (by funext x; fin_cases x; rfl)).hom).hom
|
||||
(contrOneTwoLeft x y) := by
|
||||
simp [contr_tensor, prod_tensor]
|
||||
refine PiTensorProduct.induction_on' x ?_ (by
|
||||
intro a b hx hy
|
||||
rw [contrOneTwoLeft_add_left, map_add, ← hx, ← hy]
|
||||
simp only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, mk_left, Functor.id_obj, mk_hom,
|
||||
add_tmul, map_add]
|
||||
)
|
||||
intro rx fx
|
||||
refine PiTensorProduct.induction_on' y ?_ (by
|
||||
intro a b hx hy
|
||||
rw [contrOneTwoLeft_add_right, map_add, ← hx, ← hy]
|
||||
simp only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, mk_left, Functor.id_obj, mk_hom,
|
||||
PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_add, map_add])
|
||||
intro ry fy
|
||||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul]
|
||||
rw [ contrOneTwoLeft_smul_right]
|
||||
simp
|
||||
apply congrArg
|
||||
rw [ contrOneTwoLeft_smul_left]
|
||||
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
|
||||
apply congrArg
|
||||
simpa using contr_one_two_left_eq_contrOneTwoLeft_tprod (PiTensorProduct.tprod S.k fx)
|
||||
(PiTensorProduct.tprod S.k fy) fx fy
|
||||
|
||||
|
||||
/-- Expands the inner contraction of two 2-tensors which are
|
||||
tprods in terms of basic categorical
|
||||
constructions and fields of the tensor species. -/
|
||||
|
|
|
@ -6,6 +6,7 @@ Authors: Joseph Tooby-Smith
|
|||
import HepLean.Tensors.Tree.Elab
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Congr
|
||||
import HepLean.Tensors.TensorSpecies.ContractLemmas
|
||||
/-!
|
||||
|
||||
## Units as tensors
|
||||
|
@ -37,6 +38,13 @@ lemma unitTensor_congr {c c' : S.C} (h : c = c') : {S.unitTensor c | μ ν}ᵀ.t
|
|||
change _ = (S.F.map (𝟙 _)).hom (S.unitTensor c)
|
||||
simp
|
||||
|
||||
lemma pairIsoSep_inv_unitTensor (c : S.C) :
|
||||
(Discrete.pairIsoSep S.FD).inv.hom (S.unitTensor c) =
|
||||
(S.unit.app (Discrete.mk c)).hom (1 : S.k) := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||||
unitTensor, Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V]
|
||||
erw [Discrete.rep_iso_inv_hom_apply]
|
||||
|
||||
lemma unitTensor_eq_dual_perm_eq (c : S.C) : ∀ (x : Fin (Nat.succ 0).succ),
|
||||
![S.τ c, c] x = (![S.τ (S.τ c), S.τ c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := fun x => by
|
||||
fin_cases x
|
||||
|
@ -105,6 +113,27 @@ lemma dual_unitTensor_eq_perm (c : S.C) : {S.unitTensor (S.τ c) | ν μ}ᵀ.ten
|
|||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
|
||||
rfl
|
||||
|
||||
lemma contrOneTwoLeft_unitTensor {c1 : S.C}
|
||||
(x : S.F.obj (OverColor.mk ![c1])) :
|
||||
contrOneTwoLeft x (S.unitTensor c1) = x := by
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, contrOneTwoLeft,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.instMonoidalCategory_leftUnitor_hom_hom, Monoidal.tensorUnit_obj,
|
||||
Action.instMonoidalCategory_whiskerRight_hom, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
Function.comp_apply, Action.instMonoidalCategory_associator_inv_hom, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
erw [pairIsoSep_inv_unitTensor (S := S) (c := c1)]
|
||||
change (S.F.mapIso (mkIso _)).hom.hom _ = _
|
||||
rw [Discrete.rep_iso_apply_iff, Discrete.rep_iso_inv_apply_iff]
|
||||
simpa using S.contr_unit c1 ((OverColor.forgetLiftApp S.FD c1).hom.hom ((S.F.map (OverColor.mkIso (by
|
||||
funext x; fin_cases x; rfl)).hom).hom x))
|
||||
|
||||
lemma one_contr_unitTensor_eq_self {c1 : S.C} (x : S.F.obj (OverColor.mk ![c1])) :
|
||||
{x | μ ⊗ S.unitTensor c1 | μ ν}ᵀ.tensor = ({x | ν}ᵀ |>
|
||||
perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl ))).tensor := by
|
||||
rw [contr_one_two_left_eq_contrOneTwoLeft, contrOneTwoLeft_unitTensor]
|
||||
rfl
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue