Update Basic.lean

This commit is contained in:
Pietro Monticone 2024-08-19 17:23:57 +02:00
parent 8f82ee43ea
commit 56741a0147

View file

@ -26,20 +26,12 @@ instance SO3Group : Group SO3 where
simp only [det_mul, A.2.1, B.2.1, mul_one],
by
simp [A.2.2, B.2.2, ← Matrix.mul_assoc, Matrix.mul_assoc]⟩
mul_assoc A B C := by
apply Subtype.eq
exact Matrix.mul_assoc A.1 B.1 C.1
one := ⟨1, by simp, by simp⟩
one_mul A := by
apply Subtype.eq
exact Matrix.one_mul A.1
mul_one A := by
apply Subtype.eq
exact Matrix.mul_one A.1
mul_assoc A B C := Subtype.eq (Matrix.mul_assoc A.1 B.1 C.1)
one := ⟨1, det_one, by rw [transpose_one, mul_one]⟩
one_mul A := Subtype.eq (Matrix.one_mul A.1)
mul_one A := Subtype.eq (Matrix.mul_one A.1)
inv A := ⟨A.1ᵀ, by simp [A.2], by simp [mul_eq_one_comm.mpr A.2.2]⟩
mul_left_inv A := by
apply Subtype.eq
exact mul_eq_one_comm.mpr A.2.2
mul_left_inv A := Subtype.eq (mul_eq_one_comm.mpr A.2.2)
/-- Notation for the group `SO3`. -/
scoped[GroupTheory] notation (name := SO3_notation) "SO(3)" => SO3
@ -49,9 +41,8 @@ instance : TopologicalSpace SO3 := instTopologicalSpaceSubtype
namespace SO3
lemma coe_inv (A : SO3) : (A⁻¹).1 = A.1⁻¹:= by
refine (inv_eq_left_inv ?h).symm
exact mul_eq_one_comm.mpr A.2.2
lemma coe_inv (A : SO3) : (A⁻¹).1 = A.1⁻¹:=
(inv_eq_left_inv (mul_eq_one_comm.mpr A.2.2)).symm
/-- The inclusion of `SO(3)` into `GL (Fin 3) `. -/
def toGL : SO(3) →* GL (Fin 3) where
@ -65,13 +56,11 @@ def toGL : SO(3) →* GL (Fin 3) where
rfl
lemma subtype_val_eq_toGL : (Subtype.val : SO3 → Matrix (Fin 3) (Fin 3) ) =
Units.val ∘ toGL.toFun := by
ext A
Units.val ∘ toGL.toFun :=
rfl
lemma toGL_injective : Function.Injective toGL := by
intro A B h
apply Subtype.eq
refine fun A B h ↦ Subtype.eq ?_
rw [@Units.ext_iff] at h
simpa using h
@ -94,26 +83,19 @@ lemma toProd_injective : Function.Injective toProd := by
intro A B h
rw [toProd_eq_transpose, toProd_eq_transpose] at h
rw [@Prod.mk.inj_iff] at h
apply Subtype.eq
exact h.1
exact Subtype.eq h.1
lemma toProd_continuous : Continuous toProd := by
change Continuous (fun A => (A.1, ⟨A.1ᵀ⟩))
refine continuous_prod_mk.mpr (And.intro ?_ ?_)
exact continuous_iff_le_induced.mpr fun U a => a
refine Continuous.comp' ?_ ?_
exact MulOpposite.continuous_op
refine Continuous.matrix_transpose ?_
exact continuous_iff_le_induced.mpr fun U a => a
lemma toProd_continuous : Continuous toProd :=
continuous_prod_mk.mpr ⟨continuous_iff_le_induced.mpr fun _ a ↦ a,
Continuous.comp' (MulOpposite.continuous_op)
(Continuous.matrix_transpose (continuous_iff_le_induced.mpr fun _ a ↦ a))⟩
/-- The embedding of `SO(3)` into the monoid of matrices times the opposite of
the monoid of matrices. -/
lemma toProd_embedding : Embedding toProd where
inj := toProd_injective
induced := by
refine (inducing_iff ⇑toProd).mp ?_
refine inducing_of_inducing_compose toProd_continuous continuous_fst ?hgf
exact (inducing_iff (Prod.fst ∘ ⇑toProd)).mpr rfl
induced := (inducing_iff ⇑toProd).mp (inducing_of_inducing_compose toProd_continuous
continuous_fst ((inducing_iff (Prod.fst ∘ ⇑toProd)).mpr rfl))
/-- The embedding of `SO(3)` into `GL (Fin 3) `. -/
lemma toGL_embedding : Embedding toGL.toFun where