refactor: Lint

This commit is contained in:
jstoobysmith 2024-09-11 06:31:36 -04:00
parent b3cac44f7e
commit 56d3417457

View file

@ -24,15 +24,25 @@ noncomputable section
/-- The parameters of the Two Higgs doublet model potential. -/
structure Potential where
/-- The parameter corresponding to `m₁₁²` in the 2HDM potential. -/
m₁₁2 :
/-- The parameter corresponding to `m₂₂²` in the 2HDM potential. -/
m₂₂2 :
/-- The parameter corresponding to `m₁₂²` in the 2HDM potential. -/
m₁₂2 :
/-- The parameter corresponding to `λ₁` in the 2HDM potential. -/
𝓵₁ :
/-- The parameter corresponding to `λ₂` in the 2HDM potential. -/
𝓵₂ :
/-- The parameter corresponding to `λ₃` in the 2HDM potential. -/
𝓵₃ :
/-- The parameter corresponding to `λ₄` in the 2HDM potential. -/
𝓵₄ :
/-- The parameter corresponding to `λ₅` in the 2HDM potential. -/
𝓵₅ :
/-- The parameter corresponding to `λ₆` in the 2HDM potential. -/
𝓵₆ :
/-- The parameter corresponding to `λ₇` in the 2HDM potential. -/
𝓵₇ :
namespace Potential
@ -67,7 +77,6 @@ lemma swap_fields : P.toFun Φ1 Φ2 =
apply Or.inl
rw [HiggsField.innerProd, HiggsField.innerProd, ← InnerProductSpace.conj_symm, Complex.abs_conj]
/-- If `Φ₂` is zero the potential reduces to the Higgs potential on `Φ₁`. -/
lemma right_zero : P.toFun Φ1 0 =
StandardModel.HiggsField.potential (- P.m₁₁2) (P.𝓵₁/2) Φ1 := by
@ -87,7 +96,7 @@ lemma left_zero : P.toFun 0 Φ2 =
/-- Negating `Φ₁` is equivalent to negating `m₁₂2`, `𝓵₆` and `𝓵₇`. -/
lemma neg_left : P.toFun (- Φ1) Φ2
= (Potential.mk P.m₁₁2 P.m₂₂2 (- P.m₁₂2) P.𝓵₁ P.𝓵₂ P.𝓵₃ P.𝓵₄ P.𝓵₅ (- P.𝓵₆) (- P.𝓵₇)).toFun
= (Potential.mk P.m₁₁2 P.m₂₂2 (- P.m₁₂2) P.𝓵₁ P.𝓵₂ P.𝓵₃ P.𝓵₄ P.𝓵₅ (- P.𝓵₆) (- P.𝓵₇)).toFun
Φ1 Φ2 := by
funext x
simp only [toFun, normSq, ContMDiffSection.coe_neg, Pi.neg_apply, norm_neg,
@ -98,8 +107,8 @@ lemma neg_left : P.toFun (- Φ1) Φ2
zero_mul, sub_zero, Complex.mul_im, add_zero, Complex.ofReal_pow, map_neg]
/-- Negating `Φ₁` is equivalent to negating `m₁₂2`, `𝓵₆` and `𝓵₇`. -/
lemma neg_right : P.toFun Φ1 (- Φ2)
= (Potential.mk P.m₁₁2 P.m₂₂2 (- P.m₁₂2) P.𝓵₁ P.𝓵₂ P.𝓵₃ P.𝓵₄ P.𝓵₅ (- P.𝓵₆) (- P.𝓵₇)).toFun
lemma neg_right : P.toFun Φ1 (- Φ2)
= (Potential.mk P.m₁₁2 P.m₂₂2 (- P.m₁₂2) P.𝓵₁ P.𝓵₂ P.𝓵₃ P.𝓵₄ P.𝓵₅ (- P.𝓵₆) (- P.𝓵₇)).toFun
Φ1 Φ2 := by
rw [swap_fields, neg_left, swap_fields]
simp only [map_neg, RingHomCompTriple.comp_apply, RingHom.id_apply]
@ -126,7 +135,6 @@ lemma left_eq_neg_right : P.toFun Φ1 (- Φ1) =
simp_all only [Complex.neg_re, mul_neg]
rfl
/-!
## Potential bounded from below
@ -202,191 +210,5 @@ end IsBounded
end Potential
/-! TODO: Make the potential a structure. -/
/-- The potential of the two Higgs doublet model. -/
def potential (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : )
(m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ) (Φ1 Φ2 : HiggsField) (x : SpaceTime) : :=
m₁₁2 * ‖Φ1‖_H ^ 2 x + m₂₂2 * ‖Φ2‖_H ^ 2 x - (m₁₂2 * ⟪Φ1, Φ2⟫_H x + conj m₁₂2 * ⟪Φ2, Φ1⟫_H x).re
+ 1/2 * 𝓵₁ * ‖Φ1‖_H ^ 2 x * ‖Φ1‖_H ^ 2 x + 1/2 * 𝓵₂ * ‖Φ2‖_H ^ 2 x * ‖Φ2‖_H ^ 2 x
+ 𝓵₃ * ‖Φ1‖_H ^ 2 x * ‖Φ2‖_H ^ 2 x
+ 𝓵₄ * ‖⟪Φ1, Φ2⟫_H x‖ ^ 2 + (1/2 * 𝓵₅ * ⟪Φ1, Φ2⟫_H x ^ 2 + 1/2 * conj 𝓵₅ * ⟪Φ2, Φ1⟫_H x ^ 2).re
+ (𝓵₆ * ‖Φ1‖_H ^ 2 x * ⟪Φ1, Φ2⟫_H x + conj 𝓵₆ * ‖Φ1‖_H ^ 2 x * ⟪Φ2, Φ1⟫_H x).re
+ (𝓵₇ * ‖Φ2‖_H ^ 2 x * ⟪Φ1, Φ2⟫_H x + conj 𝓵₇ * ‖Φ2‖_H ^ 2 x * ⟪Φ2, Φ1⟫_H x).re
namespace potential
variable (Φ1 Φ2 : HiggsField)
variable (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : )
variable (m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : )
/-!
## Simple properties of the potential
-/
/-- Swapping `Φ1` with `Φ2`, and a number of the parameters (with possible conjugation) leads
to an identical potential. -/
lemma swap_fields :
potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 Φ2
= potential m₂₂2 m₁₁2 𝓵₂ 𝓵₁ 𝓵₃ 𝓵₄ (conj m₁₂2) (conj 𝓵₅) (conj 𝓵₇) (conj 𝓵₆) Φ2 Φ1 := by
funext x
simp only [potential, HiggsField.normSq, Complex.add_re, Complex.mul_re, Complex.conj_re,
Complex.conj_im, neg_mul, sub_neg_eq_add, one_div, Complex.norm_eq_abs, Complex.inv_re,
Complex.re_ofNat, Complex.normSq_ofNat, div_self_mul_self', Complex.inv_im, Complex.im_ofNat,
neg_zero, zero_div, zero_mul, sub_zero, Complex.mul_im, add_zero, mul_neg, Complex.ofReal_pow,
RingHomCompTriple.comp_apply, RingHom.id_apply]
ring_nf
simp only [one_div, add_left_inj, add_right_inj, mul_eq_mul_left_iff]
apply Or.inl
rw [HiggsField.innerProd, HiggsField.innerProd, ← InnerProductSpace.conj_symm, Complex.abs_conj]
/-- If `Φ₂` is zero the potential reduces to the Higgs potential on `Φ₁`. -/
lemma right_zero : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 0 =
StandardModel.HiggsField.potential (- m₁₁2) (𝓵₁/2) Φ1 := by
funext x
simp only [potential, normSq, ContMDiffSection.coe_zero, Pi.zero_apply, norm_zero, ne_eq,
OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, mul_zero, add_zero, innerProd_right_zero,
innerProd_left_zero, Complex.zero_re, sub_zero, one_div, Complex.ofReal_pow,
Complex.ofReal_zero, HiggsField.potential, neg_neg, add_right_inj, mul_eq_mul_right_iff,
pow_eq_zero_iff, norm_eq_zero, or_self_right]
ring_nf
simp only [true_or]
/-- If `Φ₁` is zero the potential reduces to the Higgs potential on `Φ₂`. -/
lemma left_zero : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ 0 Φ2 =
StandardModel.HiggsField.potential (- m₂₂2) (𝓵₂/2) Φ2 := by
rw [swap_fields, right_zero]
/-- Negating `Φ₁` is equivalent to negating `m₁₂2`, `𝓵₆` and `𝓵₇`. -/
lemma neg_left : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ (- Φ1) Φ2
= potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ (- m₁₂2) 𝓵₅ (- 𝓵₆) (- 𝓵₇) Φ1 Φ2 := by
funext x
simp only [potential, normSq, ContMDiffSection.coe_neg, Pi.neg_apply, norm_neg,
innerProd_neg_left, mul_neg, innerProd_neg_right, Complex.add_re, Complex.neg_re,
Complex.mul_re, neg_sub, Complex.conj_re, Complex.conj_im, neg_mul, sub_neg_eq_add, neg_add_rev,
one_div, Complex.norm_eq_abs, even_two, Even.neg_pow, Complex.inv_re, Complex.re_ofNat,
Complex.normSq_ofNat, div_self_mul_self', Complex.inv_im, Complex.im_ofNat, neg_zero, zero_div,
zero_mul, sub_zero, Complex.mul_im, add_zero, Complex.ofReal_pow, map_neg]
/-- Negating `Φ₁` is equivalent to negating `m₁₂2`, `𝓵₆` and `𝓵₇`. -/
lemma neg_right : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 (- Φ2)
= potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ (- m₁₂2) 𝓵₅ (- 𝓵₆) (- 𝓵₇) Φ1 Φ2 := by
rw [swap_fields, neg_left, swap_fields]
simp only [map_neg, RingHomCompTriple.comp_apply, RingHom.id_apply]
lemma left_eq_right : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 Φ1 =
StandardModel.HiggsField.potential (- m₁₁2 - m₂₂2 + 2 * m₁₂2.re)
(𝓵₁/2 + 𝓵₂/2 + 𝓵₃ + 𝓵₄ + 𝓵₅.re + 2 * 𝓵₆.re + 2 * 𝓵₇.re) Φ1 := by
funext x
simp only [potential, normSq, innerProd_self_eq_normSq, Complex.ofReal_pow, Complex.add_re,
Complex.mul_re, normSq_apply_re_self, normSq_apply_im_zero, mul_zero, sub_zero, Complex.conj_re,
Complex.conj_im, one_div, norm_pow, Complex.norm_real, norm_norm, Complex.inv_re,
Complex.re_ofNat, Complex.normSq_ofNat, div_self_mul_self', Complex.inv_im, Complex.im_ofNat,
neg_zero, zero_div, zero_mul, Complex.mul_im, add_zero, mul_neg, neg_mul, sub_neg_eq_add,
sub_add_add_cancel, zero_add, HiggsField.potential, neg_add_rev, neg_sub]
ring_nf
erw [show ((Complex.ofReal ‖Φ1 x‖) ^ 4).re = ‖Φ1 x‖ ^ 4 by
erw [← Complex.ofReal_pow]; rfl]
ring
lemma left_eq_neg_right : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 (- Φ1) =
StandardModel.HiggsField.potential (- m₁₁2 - m₂₂2 - 2 * m₁₂2.re)
(𝓵₁/2 + 𝓵₂/2 + 𝓵₃ + 𝓵₄ + 𝓵₅.re - 2 * 𝓵₆.re - 2 * 𝓵₇.re) Φ1 := by
rw [neg_right, left_eq_right]
simp_all only [Complex.neg_re, mul_neg]
rfl
/-!
## Potential bounded from below
-/
/-! TODO: Prove bounded properties of the 2HDM potential.
See e.g. https://inspirehep.net/literature/201299. -/
/-- The proposition on the coefficents for a potential to be bounded. -/
def IsBounded (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ) (m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ) : Prop :=
∃ c, ∀ Φ1 Φ2 x, c ≤ potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 Φ2 x
lemma isBounded_right_zero {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : } {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : }
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
StandardModel.HiggsField.potential.IsBounded (- m₁₁2) (𝓵₁/2) := by
obtain ⟨c, hc⟩ := h
use c
intro Φ x
have hc1 := hc Φ 0 x
rw [right_zero] at hc1
exact hc1
lemma isBounded_left_zero {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : } {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : }
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
StandardModel.HiggsField.potential.IsBounded (- m₂₂2) (𝓵₂/2) := by
obtain ⟨c, hc⟩ := h
use c
intro Φ x
have hc1 := hc 0 Φ x
rw [left_zero] at hc1
exact hc1
lemma isBounded_𝓵₁_nonneg {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : } {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : }
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
0 ≤ 𝓵₁ := by
have h1 := isBounded_right_zero h
have h2 := StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
linarith
lemma isBounded_𝓵₂_nonneg {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : } {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : }
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
0 ≤ 𝓵₂ := by
have h1 := isBounded_left_zero h
have h2 := StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
linarith
lemma isBounded_of_left_eq_right {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : } {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : }
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
0 ≤ 𝓵₁/2 + 𝓵₂/2 + 𝓵₃ + 𝓵₄ + 𝓵₅.re + 2 * 𝓵₆.re + 2 * 𝓵₇.re := by
obtain ⟨c, hc⟩ := h
have h1 : StandardModel.HiggsField.potential.IsBounded (- m₁₁2 - m₂₂2 + 2 * m₁₂2.re)
(𝓵₁/2 + 𝓵₂/2 + 𝓵₃ + 𝓵₄ + 𝓵₅.re + 2 * 𝓵₆.re + 2 * 𝓵₇.re) := by
use c
intro Φ x
have hc1 := hc Φ Φ x
rw [left_eq_right] at hc1
exact hc1
exact StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
lemma isBounded_of_left_eq_neg_right {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : } {m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : }
(h : IsBounded m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇) :
0 ≤ 𝓵₁/2 + 𝓵₂/2 + 𝓵₃ + 𝓵₄ + 𝓵₅.re - 2 * 𝓵₆.re - 2 * 𝓵₇.re := by
obtain ⟨c, hc⟩ := h
have h1 : StandardModel.HiggsField.potential.IsBounded (- m₁₁2 - m₂₂2 - 2 * m₁₂2.re)
(𝓵₁/2 + 𝓵₂/2 + 𝓵₃ + 𝓵₄ + 𝓵₅.re - 2 * 𝓵₆.re - 2 * 𝓵₇.re) := by
use c
intro Φ x
have hc1 := hc Φ (- Φ) x
rw [left_eq_neg_right] at hc1
exact hc1
exact StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
/-! TODO: Show that if the potential is bounded then `0 ≤ 𝓵₁` and `0 ≤ 𝓵₂`. -/
/-!
## Smoothness of the potential
-/
/-! TODO: Prove smoothness properties of the 2HDM potential. -/
/-!
## Invariance of the potential under gauge transformations
-/
/-! TODO: Prove invariance properties of the 2HDM potential. -/
end potential
end
end TwoHDM