refactor: Move Lorentz Group
This commit is contained in:
parent
5cc188146f
commit
573ea890cd
13 changed files with 20 additions and 20 deletions
|
@ -1,55 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzGroup.Basic
|
||||
import HepLean.Mathematics.SO3.Basic
|
||||
import Mathlib.Topology.Constructions
|
||||
/-!
|
||||
# Rotations
|
||||
|
||||
This file describes the embedding of `SO(3)` into `LorentzGroup 3`.
|
||||
|
||||
-/
|
||||
/-! TODO: Generalize the inclusion of rotations into LorentzGroup to abitary dimension. -/
|
||||
noncomputable section
|
||||
|
||||
namespace LorentzGroup
|
||||
open GroupTheory
|
||||
|
||||
/-- Given a element of `SO(3)` the matrix corresponding to a space-time rotation. -/
|
||||
@[simp]
|
||||
def SO3ToMatrix (A : SO(3)) : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ :=
|
||||
(Matrix.fromBlocks 1 0 0 A.1)
|
||||
|
||||
lemma SO3ToMatrix_in_LorentzGroup (A : SO(3)) : SO3ToMatrix A ∈ LorentzGroup 3 := by
|
||||
rw [LorentzGroup.mem_iff_dual_mul_self]
|
||||
simp only [minkowskiMatrix.dual, minkowskiMatrix.as_block, SO3ToMatrix,
|
||||
Matrix.fromBlocks_transpose, Matrix.transpose_one, Matrix.transpose_zero,
|
||||
Matrix.fromBlocks_multiply, mul_one, Matrix.mul_zero, add_zero, Matrix.zero_mul, Matrix.mul_one,
|
||||
neg_mul, one_mul, zero_add, Matrix.mul_neg, neg_zero, mul_neg, neg_neg,
|
||||
Matrix.mul_eq_one_comm.mpr A.2.2, Matrix.fromBlocks_one]
|
||||
|
||||
lemma SO3ToMatrix_injective : Function.Injective SO3ToMatrix := by
|
||||
intro A B h
|
||||
erw [Equiv.apply_eq_iff_eq] at h
|
||||
have h1 := congrArg Matrix.toBlocks₂₂ h
|
||||
erw [Matrix.toBlocks_fromBlocks₂₂, Matrix.toBlocks_fromBlocks₂₂] at h1
|
||||
apply Subtype.eq
|
||||
exact h1
|
||||
|
||||
/-- Given a element of `SO(3)` the element of the Lorentz group corresponding to a
|
||||
space-time rotation. -/
|
||||
def SO3ToLorentz : SO(3) →* LorentzGroup 3 where
|
||||
toFun A := ⟨SO3ToMatrix A, SO3ToMatrix_in_LorentzGroup A⟩
|
||||
map_one' := Subtype.eq <| by
|
||||
simp only [SO3ToMatrix, SO3Group_one_coe, Matrix.fromBlocks_one, lorentzGroupIsGroup_one_coe]
|
||||
map_mul' A B := Subtype.eq <| by
|
||||
simp only [SO3ToMatrix, SO3Group_mul_coe, lorentzGroupIsGroup_mul_coe,
|
||||
Matrix.fromBlocks_multiply, mul_one, Matrix.mul_zero, add_zero, Matrix.zero_mul,
|
||||
Matrix.mul_one, zero_add]
|
||||
|
||||
end LorentzGroup
|
||||
|
||||
end
|
Loading…
Add table
Add a link
Reference in a new issue