commit
5a34238499
7 changed files with 599 additions and 129 deletions
|
@ -90,8 +90,8 @@ import HepLean.SpaceTime.LorentzVector.NormOne
|
|||
import HepLean.SpaceTime.MinkowskiMetric
|
||||
import HepLean.SpaceTime.SL2C.Basic
|
||||
import HepLean.SpaceTime.WeylFermion.Basic
|
||||
import HepLean.SpaceTime.WeylFermion.ColorFun
|
||||
import HepLean.SpaceTime.WeylFermion.Modules
|
||||
import HepLean.SpaceTime.WeylFermion.OverCat
|
||||
import HepLean.StandardModel.Basic
|
||||
import HepLean.StandardModel.HiggsBoson.Basic
|
||||
import HepLean.StandardModel.HiggsBoson.GaugeAction
|
||||
|
@ -99,6 +99,7 @@ import HepLean.StandardModel.HiggsBoson.PointwiseInnerProd
|
|||
import HepLean.StandardModel.HiggsBoson.Potential
|
||||
import HepLean.StandardModel.Representations
|
||||
import HepLean.Tensors.Basic
|
||||
import HepLean.Tensors.ColorCat.Basic
|
||||
import HepLean.Tensors.Contraction
|
||||
import HepLean.Tensors.EinsteinNotation.Basic
|
||||
import HepLean.Tensors.EinsteinNotation.IndexNotation
|
||||
|
@ -122,3 +123,5 @@ import HepLean.Tensors.IndexNotation.IndexString
|
|||
import HepLean.Tensors.IndexNotation.TensorIndex
|
||||
import HepLean.Tensors.MulActionTensor
|
||||
import HepLean.Tensors.RisingLowering
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.Tree.Elab
|
||||
|
|
|
@ -3,136 +3,12 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.CategoryTheory.Category.Basic
|
||||
import Mathlib.CategoryTheory.Types
|
||||
import Mathlib.CategoryTheory.Monoidal.Category
|
||||
import Mathlib.CategoryTheory.Comma.Over
|
||||
import Mathlib.CategoryTheory.Core
|
||||
import HepLean.SpaceTime.WeylFermion.Basic
|
||||
import HepLean.SpaceTime.LorentzVector.Complex
|
||||
import HepLean.Tensors.ColorCat.Basic
|
||||
/-!
|
||||
|
||||
## Category over color
|
||||
## Monodial functor from color cat.
|
||||
|
||||
-/
|
||||
|
||||
namespace IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
/-- The core of the category of Types over C. -/
|
||||
def OverColor (C : Type) := CategoryTheory.Core (CategoryTheory.Over C)
|
||||
|
||||
/-- The instance of `OverColor C` as a groupoid. -/
|
||||
instance (C : Type) : Groupoid (OverColor C) := coreCategory
|
||||
|
||||
namespace OverColor
|
||||
|
||||
namespace Hom
|
||||
|
||||
variable {C : Type} {f g h : OverColor C}
|
||||
|
||||
/-- Given a hom in `OverColor C` the underlying equivalence between types. -/
|
||||
def toEquiv (m : f ⟶ g) : f.left ≃ g.left where
|
||||
toFun := m.hom.left
|
||||
invFun := m.inv.left
|
||||
left_inv := by
|
||||
simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.hom_inv_id)
|
||||
right_inv := by
|
||||
simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.inv_hom_id)
|
||||
|
||||
@[simp]
|
||||
lemma toEquiv_comp (m : f ⟶ g) (n : g ⟶ h) : toEquiv (m ≫ n) = (toEquiv m).trans (toEquiv n) := by
|
||||
ext x
|
||||
simp [toEquiv]
|
||||
rfl
|
||||
|
||||
lemma toEquiv_symm_apply (m : f ⟶ g) (i : g.left) :
|
||||
f.hom ((toEquiv m).symm i) = g.hom i := by
|
||||
simpa [toEquiv, types_comp] using congrFun m.inv.w i
|
||||
|
||||
lemma toEquiv_comp_hom (m : f ⟶ g) : g.hom ∘ (toEquiv m) = f.hom := by
|
||||
ext x
|
||||
simpa [types_comp, toEquiv] using congrFun m.hom.w x
|
||||
|
||||
end Hom
|
||||
|
||||
instance (C : Type) : MonoidalCategoryStruct (OverColor C) where
|
||||
tensorObj f g := Over.mk (Sum.elim f.hom g.hom)
|
||||
tensorUnit := Over.mk Empty.elim
|
||||
whiskerLeft X Y1 Y2 m := Over.isoMk (Equiv.sumCongr (Equiv.refl X.left) (Hom.toEquiv m)).toIso
|
||||
(by
|
||||
ext x
|
||||
simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom,
|
||||
types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
|
||||
rw [Sum.elim_map, Hom.toEquiv_comp_hom]
|
||||
rfl)
|
||||
whiskerRight m X := Over.isoMk (Equiv.sumCongr (Hom.toEquiv m) (Equiv.refl X.left)).toIso
|
||||
(by
|
||||
ext x
|
||||
simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom,
|
||||
types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
|
||||
rw [Sum.elim_map, Hom.toEquiv_comp_hom]
|
||||
rfl)
|
||||
associator X Y Z := {
|
||||
hom := Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Functor.const_obj_obj, Equiv.sumAssoc,
|
||||
Equiv.toIso_hom, Equiv.coe_fn_mk, types_comp]
|
||||
ext x
|
||||
simp only [Function.comp_apply]
|
||||
cases x with
|
||||
| inl val =>
|
||||
cases val with
|
||||
| inl val_1 => simp_all only [Sum.elim_inl]
|
||||
| inr val_2 => simp_all only [Sum.elim_inl, Sum.elim_inr, Function.comp_apply]
|
||||
| inr val_1 => simp_all only [Sum.elim_inr, Function.comp_apply]),
|
||||
inv := (Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Functor.const_obj_obj, Equiv.sumAssoc,
|
||||
Equiv.toIso_hom, Equiv.coe_fn_mk, types_comp]
|
||||
ext x
|
||||
simp only [Function.comp_apply]
|
||||
cases x with
|
||||
| inl val =>
|
||||
cases val with
|
||||
| inl val_1 => simp_all only [Sum.elim_inl]
|
||||
| inr val_2 => simp_all only [Sum.elim_inl, Sum.elim_inr, Function.comp_apply]
|
||||
| inr val_1 => simp_all only [Sum.elim_inr, Function.comp_apply])).symm,
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.inv_hom_id]
|
||||
rfl}
|
||||
leftUnitor X := {
|
||||
hom := Over.isoMk (Equiv.emptySum Empty X.left).toIso
|
||||
inv := (Over.isoMk (Equiv.emptySum Empty X.left).toIso).symm
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]}
|
||||
rightUnitor X := {
|
||||
hom := Over.isoMk (Equiv.sumEmpty X.left Empty).toIso
|
||||
inv := (Over.isoMk (Equiv.sumEmpty X.left Empty).toIso).symm
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]}
|
||||
|
||||
end OverColor
|
||||
|
||||
end IndexNotation
|
||||
|
||||
namespace Fermion
|
||||
|
||||
noncomputable section
|
||||
|
@ -250,6 +126,7 @@ end colorFun
|
|||
|
||||
/-- The functor between `OverColor Color` and `Rep ℂ SL(2, ℂ)` taking a map of colors
|
||||
to the corresponding tensor product representation. -/
|
||||
@[simps! obj_V_carrier]
|
||||
def colorFun : OverColor Color ⥤ Rep ℂ SL(2, ℂ) where
|
||||
obj := colorFun.obj'
|
||||
map := colorFun.map'
|
||||
|
@ -282,5 +159,40 @@ def colorFun : OverColor Color ⥤ Rep ℂ SL(2, ℂ) where
|
|||
Equiv.cast_apply, cast_cast, cast_inj]
|
||||
rfl
|
||||
|
||||
namespace colorFun
|
||||
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
@[simp]
|
||||
lemma obj_ρ_empty (g : SL(2, ℂ)) : (colorFun.obj (𝟙_ (OverColor Color))).ρ g = LinearMap.id := by
|
||||
erw [colorFun.obj'_ρ]
|
||||
ext x
|
||||
refine PiTensorProduct.induction_on' x (fun r x => ?_) <| fun x y hx hy => by
|
||||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||||
Function.comp_apply, hy]
|
||||
erw [hx, hy]
|
||||
rfl
|
||||
simp only [OverColor.instMonoidalCategoryStruct_tensorUnit_left, Functor.id_obj,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, PiTensorProduct.tprodCoeff_eq_smul_tprod,
|
||||
_root_.map_smul, PiTensorProduct.map_tprod, LinearMap.id_coe, id_eq]
|
||||
apply congrArg
|
||||
apply congrArg
|
||||
funext i
|
||||
exact Empty.elim i
|
||||
|
||||
/-- The unit natural transformation. -/
|
||||
def ε : 𝟙_ (Rep ℂ SL(2, ℂ)) ⟶ colorFun.obj (𝟙_ (OverColor Color)) where
|
||||
hom := (PiTensorProduct.isEmptyEquiv Empty).symm.toLinearMap
|
||||
comm M := by
|
||||
refine LinearMap.ext (fun x => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ', Functor.id_obj, Category.id_comp, LinearEquiv.coe_coe]
|
||||
erw [obj_ρ_empty M]
|
||||
rfl
|
||||
|
||||
end colorFun
|
||||
|
||||
end
|
||||
end Fermion
|
|
@ -541,8 +541,10 @@ def domCoprod : MultilinearMap R (fun x => 𝓣.ColorModule (Sum.elim cX cY x))
|
|||
(PiTensorProduct.tprod R (𝓣.inrPureTensor f))
|
||||
map_add' f xy v1 v2:= by
|
||||
match xy with
|
||||
| Sum.inl x => simp [← TensorProduct.add_tmul]
|
||||
| Sum.inr y => simp [← TensorProduct.tmul_add]
|
||||
| Sum.inl x => simp only [Sum.elim_inl, inlPureTensor_update_left, MultilinearMap.map_add,
|
||||
inrPureTensor_update_left, ← add_tmul]
|
||||
| Sum.inr y => simp only [Sum.elim_inr, inlPureTensor_update_right, inrPureTensor_update_right,
|
||||
MultilinearMap.map_add, ← tmul_add]
|
||||
map_smul' f xy r p := by
|
||||
match xy with
|
||||
| Sum.inl x => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul]
|
||||
|
|
251
HepLean/Tensors/ColorCat/Basic.lean
Normal file
251
HepLean/Tensors/ColorCat/Basic.lean
Normal file
|
@ -0,0 +1,251 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.CategoryTheory.Category.Basic
|
||||
import Mathlib.CategoryTheory.Types
|
||||
import Mathlib.CategoryTheory.Monoidal.Category
|
||||
import Mathlib.CategoryTheory.Comma.Over
|
||||
import Mathlib.CategoryTheory.Core
|
||||
import Mathlib.CategoryTheory.Monoidal.Braided.Basic
|
||||
import HepLean.SpaceTime.WeylFermion.Basic
|
||||
import HepLean.SpaceTime.LorentzVector.Complex
|
||||
/-!
|
||||
|
||||
## Over category.
|
||||
|
||||
-/
|
||||
|
||||
namespace IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
/-- The core of the category of Types over C. -/
|
||||
def OverColor (C : Type) := CategoryTheory.Core (CategoryTheory.Over C)
|
||||
|
||||
/-- The instance of `OverColor C` as a groupoid. -/
|
||||
instance (C : Type) : Groupoid (OverColor C) := coreCategory
|
||||
|
||||
namespace OverColor
|
||||
|
||||
namespace Hom
|
||||
|
||||
variable {C : Type} {f g h : OverColor C}
|
||||
|
||||
/-- Given a hom in `OverColor C` the underlying equivalence between types. -/
|
||||
def toEquiv (m : f ⟶ g) : f.left ≃ g.left where
|
||||
toFun := m.hom.left
|
||||
invFun := m.inv.left
|
||||
left_inv := by
|
||||
simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.hom_inv_id)
|
||||
right_inv := by
|
||||
simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.inv_hom_id)
|
||||
|
||||
@[simp]
|
||||
lemma toEquiv_id (f : OverColor C) : toEquiv (𝟙 f) = Equiv.refl f.left := by
|
||||
ext x
|
||||
simp [toEquiv]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma toEquiv_comp (m : f ⟶ g) (n : g ⟶ h) : toEquiv (m ≫ n) = (toEquiv m).trans (toEquiv n) := by
|
||||
ext x
|
||||
simp [toEquiv]
|
||||
rfl
|
||||
|
||||
lemma toEquiv_symm_apply (m : f ⟶ g) (i : g.left) :
|
||||
f.hom ((toEquiv m).symm i) = g.hom i := by
|
||||
simpa [toEquiv, types_comp] using congrFun m.inv.w i
|
||||
|
||||
lemma toEquiv_comp_hom (m : f ⟶ g) : g.hom ∘ (toEquiv m) = f.hom := by
|
||||
ext x
|
||||
simpa [types_comp, toEquiv] using congrFun m.hom.w x
|
||||
|
||||
end Hom
|
||||
|
||||
section monoidal
|
||||
|
||||
/-!
|
||||
|
||||
## The monoidal structure on `OverColor C`.
|
||||
|
||||
The category `OverColor C` can, through the disjoint union, be given the structure of a
|
||||
symmetric monoidal category.
|
||||
|
||||
-/
|
||||
|
||||
@[simps!]
|
||||
instance (C : Type) : MonoidalCategoryStruct (OverColor C) where
|
||||
tensorObj f g := Over.mk (Sum.elim f.hom g.hom)
|
||||
tensorUnit := Over.mk Empty.elim
|
||||
whiskerLeft X Y1 Y2 m := Over.isoMk (Equiv.sumCongr (Equiv.refl X.left) (Hom.toEquiv m)).toIso
|
||||
(by
|
||||
ext x
|
||||
simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom,
|
||||
types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
|
||||
rw [Sum.elim_map, Hom.toEquiv_comp_hom]
|
||||
rfl)
|
||||
whiskerRight m X := Over.isoMk (Equiv.sumCongr (Hom.toEquiv m) (Equiv.refl X.left)).toIso
|
||||
(by
|
||||
ext x
|
||||
simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom,
|
||||
types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
|
||||
rw [Sum.elim_map, Hom.toEquiv_comp_hom]
|
||||
rfl)
|
||||
associator X Y Z := {
|
||||
hom := Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl),
|
||||
inv := (Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl)).symm,
|
||||
hom_inv_id := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.inv_hom_id]
|
||||
rfl}
|
||||
leftUnitor X := {
|
||||
hom := Over.isoMk (Equiv.emptySum Empty X.left).toIso
|
||||
inv := (Over.isoMk (Equiv.emptySum Empty X.left).toIso).symm
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]}
|
||||
rightUnitor X := {
|
||||
hom := Over.isoMk (Equiv.sumEmpty X.left Empty).toIso
|
||||
inv := (Over.isoMk (Equiv.sumEmpty X.left Empty).toIso).symm
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]}
|
||||
|
||||
instance (C : Type) : MonoidalCategory (OverColor C) where
|
||||
tensorHom_def f g := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => rfl
|
||||
tensor_id X Y := CategoryTheory.Iso.ext <| (Iso.eq_inv_comp _).mp rfl
|
||||
tensor_comp f1 f2 g1 g2 := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
whiskerLeft_id X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
id_whiskerRight X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
associator_naturality {X1 X2 X3 Y1 Y2 Y3} f1 f2 f3 :=
|
||||
CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl
|
||||
leftUnitor_naturality f :=
|
||||
CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => exact Empty.elim x
|
||||
| Sum.inr x => rfl
|
||||
rightUnitor_naturality f :=
|
||||
CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => exact Empty.elim x
|
||||
pentagon f g h i := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl (Sum.inl x)) => rfl
|
||||
| Sum.inl (Sum.inl (Sum.inr x)) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl
|
||||
triangle f g := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => exact Empty.elim x
|
||||
| Sum.inr x => rfl
|
||||
|
||||
instance (C : Type) : BraidedCategory (OverColor C) where
|
||||
braiding f g := {
|
||||
hom := Over.isoMk (Equiv.sumComm f.left g.left).toIso
|
||||
inv := (Over.isoMk (Equiv.sumComm f.left g.left).toIso).symm
|
||||
hom_inv_id := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl,
|
||||
inv_hom_id := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl}
|
||||
braiding_naturality_right X Y1 Y2 f := CategoryTheory.Iso.ext <| Over.OverMorphism.ext
|
||||
<| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
braiding_naturality_left X f := CategoryTheory.Iso.ext <| Over.OverMorphism.ext
|
||||
<| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
hexagon_forward X1 X2 X3 := CategoryTheory.Iso.ext <| Over.OverMorphism.ext
|
||||
<| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl
|
||||
hexagon_reverse X1 X2 X3 := CategoryTheory.Iso.ext <| Over.OverMorphism.ext
|
||||
<| funext fun x => by
|
||||
match x with
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
| Sum.inl x => rfl
|
||||
|
||||
instance (C : Type) : SymmetricCategory (OverColor C) where
|
||||
toBraidedCategory := instBraidedCategory C
|
||||
symmetry X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
end monoidal
|
||||
|
||||
/-- Make an object of `OverColor C` from a map `X → C`. -/
|
||||
def mk (f : X → C) : OverColor C := Over.mk f
|
||||
|
||||
open MonoidalCategory
|
||||
|
||||
/-- The isomorphism between `c : X → C` and `c ∘ e.symm` as objects in `OverColor C` for an
|
||||
equivalence `e`. -/
|
||||
def equivToIso {c : X → C} (e : X ≃ Y) : mk c ≅ mk (c ∘ e.symm) := {
|
||||
hom := Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl),
|
||||
inv := (Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl)).symm,
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Iso.symm_hom, Iso.inv_hom_id]
|
||||
rfl}
|
||||
|
||||
end OverColor
|
||||
|
||||
end IndexNotation
|
|
@ -17,6 +17,11 @@ The first character `ᵘ` specifies the color of the index, and the subsequent c
|
|||
|
||||
Strings of indices e.g. `ᵘ¹²ᵤ₄₃`` are defined elsewhere.
|
||||
|
||||
## Note
|
||||
|
||||
Index notation is currently being refactored. Much of the content here will likely be replaced
|
||||
or removed. See the HepLean.Tensors.Tree.Basic for the current approach of the index notation.
|
||||
|
||||
-/
|
||||
|
||||
open Lean
|
||||
|
|
106
HepLean/Tensors/Tree/Basic.lean
Normal file
106
HepLean/Tensors/Tree/Basic.lean
Normal file
|
@ -0,0 +1,106 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.ColorCat.Basic
|
||||
/-!
|
||||
|
||||
## Tensor trees
|
||||
|
||||
-/
|
||||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
/-- The sturcture of a type of tensors e.g. Lorentz tensors, Einstien tensors,
|
||||
complex Lorentz tensors.
|
||||
Note: This structure is not fully defined yet. -/
|
||||
structure TensorStruct where
|
||||
/-- The colors of indices e.g. up or down. -/
|
||||
C : Type
|
||||
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/
|
||||
G : Type
|
||||
/-- An instance of `G` as a group. -/
|
||||
G_group : Group G
|
||||
/-- The field over which we want to consider the tensors to live in, usually `ℝ` or `ℂ`. -/
|
||||
k : Type
|
||||
/-- An instance of `k` as a commutative ring. -/
|
||||
k_commRing : CommRing k
|
||||
/-- A `MonoidalFunctor` from `OverColor C` giving the rep corresponding to a map of colors
|
||||
`X → C`. -/
|
||||
F : MonoidalFunctor (OverColor C) (Rep k G)
|
||||
/-- A map from `C` to `C`. An involution. -/
|
||||
τ : C → C
|
||||
/-- A specification of the dimension of each color in C. This will be used for explicit
|
||||
evaluation of tensors. -/
|
||||
evalNo : C → ℕ
|
||||
|
||||
namespace TensorStruct
|
||||
|
||||
variable (S : TensorStruct)
|
||||
|
||||
instance : CommRing S.k := S.k_commRing
|
||||
|
||||
instance : Group S.G := S.G_group
|
||||
|
||||
end TensorStruct
|
||||
|
||||
/-- A syntax tree for tensor expressions. -/
|
||||
inductive TensorTree (S : TensorStruct) : ∀ {n : ℕ}, (Fin n → S.C) → Type where
|
||||
| tensorNode {n : ℕ} {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : TensorTree S c
|
||||
| add {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c → TensorTree S c
|
||||
| perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : TensorTree S c1
|
||||
| prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||
(t : TensorTree S c) (t1 : TensorTree S c1) : TensorTree S (Sum.elim c c1 ∘ finSumFinEquiv.symm)
|
||||
| scale {n : ℕ} {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c
|
||||
| mult {n m : ℕ} {c : Fin n.succ → S.C} {c1 : Fin m.succ → S.C} :
|
||||
(i : Fin n.succ) → (j : Fin m.succ) → TensorTree S c → TensorTree S c1 →
|
||||
TensorTree S (Sum.elim (c ∘ Fin.succAbove i) (c1 ∘ Fin.succAbove j) ∘ finSumFinEquiv.symm)
|
||||
| contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) →
|
||||
(j : Fin n.succ) → TensorTree S c → TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||
| jiggle {n : ℕ} {c : Fin n → S.C} : (i : Fin n) → TensorTree S c →
|
||||
TensorTree S (Function.update c i (S.τ (c i)))
|
||||
| eval {n : ℕ} {c : Fin n.succ → S.C} :
|
||||
(i : Fin n.succ) → (x : Fin (S.evalNo (c i))) → TensorTree S c →
|
||||
TensorTree S (c ∘ Fin.succAbove i)
|
||||
|
||||
namespace TensorTree
|
||||
|
||||
variable {S : TensorStruct} {n : ℕ} {c : Fin n → S.C} (T : TensorTree S c)
|
||||
|
||||
open MonoidalCategory
|
||||
open TensorProduct
|
||||
|
||||
/-- The number of nodes in a tensor tree. -/
|
||||
def size : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → ℕ := fun
|
||||
| tensorNode _ => 1
|
||||
| add t1 t2 => t1.size + t2.size + 1
|
||||
| perm _ t => t.size + 1
|
||||
| scale _ t => t.size + 1
|
||||
| prod t1 t2 => t1.size + t2.size + 1
|
||||
| mult _ _ t1 t2 => t1.size + t2.size + 1
|
||||
| contr _ _ t => t.size + 1
|
||||
| jiggle _ t => t.size + 1
|
||||
| eval _ _ t => t.size + 1
|
||||
|
||||
noncomputable section
|
||||
|
||||
/-- The underlying tensor a tensor tree corresponds to.
|
||||
Note: This function is not fully defined yet. -/
|
||||
def tensor : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → S.F.obj (OverColor.mk c) := fun
|
||||
| tensorNode t => t
|
||||
| add t1 t2 => t1.tensor + t2.tensor
|
||||
| perm σ t => (S.F.map σ).hom t.tensor
|
||||
| scale a t => a • t.tensor
|
||||
| prod t1 t2 => (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor))
|
||||
| _ => 0
|
||||
|
||||
lemma tensor_tensorNode {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) :
|
||||
(tensorNode T).tensor = T := rfl
|
||||
|
||||
end
|
||||
|
||||
end TensorTree
|
191
HepLean/Tensors/Tree/Elab.lean
Normal file
191
HepLean/Tensors/Tree/Elab.lean
Normal file
|
@ -0,0 +1,191 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import Lean.Elab.Term
|
||||
/-!
|
||||
|
||||
## Elaboration of tensor trees
|
||||
|
||||
This file turns tensor expressions into tensor trees.
|
||||
|
||||
-/
|
||||
open Lean
|
||||
open Lean.Elab.Term
|
||||
|
||||
open Lean
|
||||
open Lean.Meta
|
||||
open Lean.Elab
|
||||
open Lean.Elab.Term
|
||||
open Lean Meta Elab Tactic
|
||||
|
||||
/-!
|
||||
|
||||
## Indexies
|
||||
|
||||
-/
|
||||
|
||||
/-- A syntax category for indices of tensor expressions. -/
|
||||
declare_syntax_cat indexExpr
|
||||
|
||||
/-- A basic index is a ident. -/
|
||||
syntax ident : indexExpr
|
||||
|
||||
/-- An index can be a num, which will be used to evaluate the tensor. -/
|
||||
syntax num : indexExpr
|
||||
|
||||
/-- Notation to discribe the jiggle of a tensor index. -/
|
||||
syntax "τ(" ident ")" : indexExpr
|
||||
|
||||
/-- Bool which is ture if an index is a num. -/
|
||||
def indexExprIsNum (stx : Syntax) : Bool :=
|
||||
match stx with
|
||||
| `(indexExpr|$_:num) => true
|
||||
| _ => false
|
||||
|
||||
/-- If an index is a num - the undelrying natural number. -/
|
||||
def indexToNum (stx : Syntax) : TermElabM Nat :=
|
||||
match stx with
|
||||
| `(indexExpr|$a:num) =>
|
||||
match a.raw.isNatLit? with
|
||||
| some n => return n
|
||||
| none => throwError "Expected a natural number literal."
|
||||
| _ =>
|
||||
throwError "Unsupported tensor expression syntax in indexToNum: {stx}"
|
||||
|
||||
/-- When an index is not a num, the corresponding ident. -/
|
||||
def indexToIdent (stx : Syntax) : TermElabM Ident :=
|
||||
match stx with
|
||||
| `(indexExpr|$a:ident) => return a
|
||||
| `(indexExpr| τ($a:ident)) => return a
|
||||
| _ =>
|
||||
throwError "Unsupported tensor expression syntax in indexToIdent: {stx}"
|
||||
|
||||
/-- Takes a pair ``a b : ℕ × TSyntax `indexExpr``. If `a.1 < b.1` and `a.2 = b.2` then
|
||||
outputs `some (a.1, b.1)`, otherwise `none`. -/
|
||||
def indexPosEq (a b : ℕ × TSyntax `indexExpr) : TermElabM (Option (ℕ × ℕ)) := do
|
||||
let a' ← indexToIdent a.2
|
||||
let b' ← indexToIdent b.2
|
||||
if a.1 < b.1 ∧ Lean.TSyntax.getId a' = Lean.TSyntax.getId b' then
|
||||
return some (a.1, b.1)
|
||||
else
|
||||
return none
|
||||
|
||||
/-- Bool which is true if an index is of the form τ(i) that is, to be dualed. -/
|
||||
def indexToDual (stx : Syntax) : Bool :=
|
||||
match stx with
|
||||
| `(indexExpr| τ($_)) => true
|
||||
| _ => false
|
||||
/-!
|
||||
|
||||
## Tensor expressions
|
||||
|
||||
-/
|
||||
|
||||
/-- A syntax category for tensor expressions. -/
|
||||
declare_syntax_cat tensorExpr
|
||||
|
||||
/-- The syntax for a tensor node. -/
|
||||
syntax term "|" (ppSpace indexExpr)* : tensorExpr
|
||||
|
||||
/-- The syntax for tensor prod two tensor nodes. -/
|
||||
syntax tensorExpr "⊗" tensorExpr : tensorExpr
|
||||
|
||||
/-- Allowing brackets to be used in a tensor expression. -/
|
||||
syntax "(" tensorExpr ")" : tensorExpr
|
||||
|
||||
/-!
|
||||
|
||||
## For tensor nodes.
|
||||
|
||||
The operations are done in the following order:
|
||||
- evaluation.
|
||||
- dualization.
|
||||
- contraction.
|
||||
-/
|
||||
|
||||
namespace TensorNode
|
||||
|
||||
/-- The indices of a tensor node. Before contraction, dualisation, and evaluation. -/
|
||||
partial def getIndicesNode (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
||||
match stx with
|
||||
| `(tensorExpr| $_:term | $[$args]*) => do
|
||||
let indices ← args.toList.mapM fun arg => do
|
||||
match arg with
|
||||
| `(indexExpr|$t:indexExpr) => pure t
|
||||
return indices
|
||||
| _ =>
|
||||
throwError "Unsupported tensor expression syntax in getIndicesNode: {stx}"
|
||||
|
||||
/-- The positions in getIndicesNode which get evaluated, and the value they take. -/
|
||||
partial def getEvalPos (stx : Syntax) : TermElabM (List (ℕ × ℕ)) := do
|
||||
let ind ← getIndicesNode stx
|
||||
let indEnum := ind.enum
|
||||
let evals := indEnum.filter (fun x => indexExprIsNum x.2)
|
||||
let evals2 ← (evals.mapM (fun x => indexToNum x.2))
|
||||
return List.zip (evals.map (fun x => x.1)) evals2
|
||||
|
||||
/-- For each element of `l : List (ℕ × ℕ)` applies `TensorTree.eval` to the given term. -/
|
||||
def evalSyntax (l : List (ℕ × ℕ)) (T : Term) : Term :=
|
||||
l.foldl (fun T' (x1, x2) => Syntax.mkApp (mkIdent ``TensorTree.eval)
|
||||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x2), T']) T
|
||||
|
||||
/-- The positions in getIndicesNode which get dualized. -/
|
||||
partial def getDualPos (stx : Syntax) : TermElabM (List ℕ) := do
|
||||
let ind ← getIndicesNode stx
|
||||
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
|
||||
let indEnum := indFilt.enum
|
||||
let duals := indEnum.filter (fun x => indexToDual x.2)
|
||||
return duals.map (fun x => x.1)
|
||||
|
||||
/-- For each element of `l : List ℕ` applies `TensorTree.jiggle` to the given term. -/
|
||||
def dualSyntax (l : List ℕ) (T : Term) : Term :=
|
||||
l.foldl (fun T' x => Syntax.mkApp (mkIdent ``TensorTree.jiggle)
|
||||
#[Syntax.mkNumLit (toString x), T']) T
|
||||
|
||||
/-- The pairs of positions in getIndicesNode which get contracted. -/
|
||||
partial def getContrPos (stx : Syntax) : TermElabM (List (ℕ × ℕ)) := do
|
||||
let ind ← getIndicesNode stx
|
||||
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
|
||||
let indEnum := indFilt.enum
|
||||
let bind := List.bind indEnum (fun a => indEnum.map (fun b => (a, b)))
|
||||
let filt ← bind.filterMapM (fun x => indexPosEq x.1 x.2)
|
||||
if ¬ ((filt.map Prod.fst).Nodup ∧ (filt.map Prod.snd).Nodup) then
|
||||
throwError "To many contractions"
|
||||
return filt
|
||||
|
||||
/-- The list of indices after contraction. -/
|
||||
def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
||||
let ind ← getIndicesNode stx
|
||||
let indFilt : List (TSyntax `indexExpr) := ind.filter (fun x => ¬ indexExprIsNum x)
|
||||
return ind.filter (fun x => indFilt.count x ≤ 1)
|
||||
|
||||
/-- For each element of `l : List (ℕ × ℕ)` applies `TensorTree.contr` to the given term. -/
|
||||
def contrSyntax (l : List (ℕ × ℕ)) (T : Term) : Term :=
|
||||
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
|
||||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), T']) T
|
||||
|
||||
/-- An elaborator for tensor nodes. This is to be generalized. -/
|
||||
def elaborateTensorNode (stx : Syntax) : TermElabM Expr := do
|
||||
match stx with
|
||||
| `(tensorExpr| $T:term | $[$args]*) => do
|
||||
let tensorNodeSyntax := Syntax.mkApp (mkIdent ``TensorTree.tensorNode) #[T]
|
||||
let evalSyntax := evalSyntax (← getEvalPos stx) tensorNodeSyntax
|
||||
let dualSyntax := dualSyntax (← getDualPos stx) evalSyntax
|
||||
let contrSyntax := contrSyntax (← getContrPos stx) dualSyntax
|
||||
let tensorExpr ← elabTerm contrSyntax none
|
||||
return tensorExpr
|
||||
| _ =>
|
||||
throwError "Unsupported tensor expression syntax in elaborateTensorNode: {stx}"
|
||||
|
||||
/-- Syntax turning a tensor expression into a term. -/
|
||||
syntax (name := tensorExprSyntax) "{" tensorExpr "}ᵀ" : term
|
||||
|
||||
elab_rules (kind:=tensorExprSyntax) : term
|
||||
| `(term| {$e:tensorExpr}ᵀ) => do
|
||||
let tensorTree ← elaborateTensorNode e
|
||||
return tensorTree
|
||||
|
||||
end TensorNode
|
Loading…
Add table
Add a link
Reference in a new issue