refactor: Lint
This commit is contained in:
parent
27721bc476
commit
5a613b4de6
4 changed files with 13 additions and 10 deletions
|
@ -95,7 +95,7 @@ lemma isBounded_right_zero {m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ :
|
|||
obtain ⟨c, hc⟩ := h
|
||||
use c
|
||||
intro Φ x
|
||||
have hc1 := hc Φ 0 x
|
||||
have hc1 := hc Φ 0 x
|
||||
rw [right_zero] at hc1
|
||||
exact hc1
|
||||
|
||||
|
|
|
@ -59,6 +59,8 @@ lemma smooth_toFin2ℂ : Smooth 𝓘(ℝ, HiggsVec) 𝓘(ℝ, Fin 2 → ℂ) toF
|
|||
def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
||||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||
|
||||
/-- Generating a Higgs vector from a real number, such that the norm-squared of that Higgs vector
|
||||
is the given real number. -/
|
||||
def ofReal (a : ℝ) : HiggsVec :=
|
||||
![Real.sqrt a, 0]
|
||||
|
||||
|
@ -164,6 +166,8 @@ lemma isConst_of_higgsVec (φ : HiggsVec) : φ.toField.IsConst := fun _ => congr
|
|||
lemma isConst_iff_of_higgsVec (Φ : HiggsField) : Φ.IsConst ↔ ∃ (φ : HiggsVec), Φ = φ.toField :=
|
||||
Iff.intro (fun h ↦ ⟨Φ 0, by ext x y; rw [← h x 0]; rfl⟩) (fun ⟨φ, hφ⟩ x y ↦ by subst hφ; rfl)
|
||||
|
||||
/-- Generating a constant Higgs field from a real number, such that the norm-squared of that Higgs
|
||||
vector is the given real number. -/
|
||||
def ofReal (a : ℝ) : HiggsField := (HiggsVec.ofReal a).toField
|
||||
|
||||
end HiggsField
|
||||
|
|
|
@ -135,7 +135,7 @@ def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroup :=
|
|||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||||
|
||||
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||||
rep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
|
||||
rep (rotateGuageGroup hφ) φ = ![0, Complex.ofReal ‖φ‖] := by
|
||||
rw [rep_apply]
|
||||
simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul,
|
||||
Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe]
|
||||
|
@ -155,7 +155,7 @@ lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
|||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
|
||||
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
||||
∃ (g : GaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||||
∃ (g : GaugeGroup), rep g φ = ![0, Complex.ofReal ‖φ‖] := by
|
||||
by_cases h : φ = 0
|
||||
· use ⟨1, 1, 1⟩
|
||||
simp [h]
|
||||
|
|
|
@ -76,7 +76,8 @@ lemma discrim_nonneg (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField)
|
|||
exact sq_nonneg (2 * 𝓵 * ‖φ‖_H ^ 2 x + - μ2)
|
||||
· exact h
|
||||
|
||||
lemma discrim_eq_sqrt_discrim_mul_self (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
lemma discrim_eq_sqrt_discrim_mul_self (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField)
|
||||
(x : SpaceTime) :
|
||||
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = Real.sqrt (discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x)) *
|
||||
Real.sqrt (discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x)) := by
|
||||
refine Eq.symm (Real.mul_self_sqrt ?h)
|
||||
|
@ -134,7 +135,7 @@ lemma discrim_ge_zero_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 < 0) (c :
|
|||
← (div_le_iff₀' (by linarith : 0 < - 4 * 𝓵)), le_neg]
|
||||
ring_nf
|
||||
|
||||
example (a b c : ℝ ) (hc : c < 0) : a ≤ b / c ↔ b ≤ c * a := by
|
||||
example (a b c : ℝ) (hc : c < 0) : a ≤ b / c ↔ b ≤ c * a := by
|
||||
exact le_div_iff_of_neg' hc
|
||||
lemma pot_le_zero_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
(0 < μ2 ∧ potential μ2 𝓵 φ x ≤ 0) ∨ μ2 ≤ 0 := by
|
||||
|
@ -142,7 +143,7 @@ lemma pot_le_zero_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 < 0) (φ : Higg
|
|||
· simp [hμ2]
|
||||
simp [potential, hμ2]
|
||||
apply And.intro (lt_of_not_ge hμ2)
|
||||
have h1 : 0 ≤ μ2 * ‖φ x‖ ^ 2 := by
|
||||
have h1 : 0 ≤ μ2 * ‖φ x‖ ^ 2 := by
|
||||
refine Left.mul_nonneg ?ha ?hb
|
||||
· exact le_of_not_ge hμ2
|
||||
· exact sq_nonneg ‖φ x‖
|
||||
|
@ -198,7 +199,8 @@ lemma exist_sol_iff_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 𝓵 < 0) (c :
|
|||
rw [← le_div_iff_of_neg']
|
||||
· exact h.2
|
||||
· linarith
|
||||
have hdd : discrim 𝓵 (-μ2) (-c) = Real.sqrt (discrim 𝓵 (-μ2) (-c)) * Real.sqrt (discrim 𝓵 (-μ2) (-c)) := by
|
||||
have hdd : discrim 𝓵 (-μ2) (-c) = Real.sqrt (discrim 𝓵 (-μ2) (-c))
|
||||
* Real.sqrt (discrim 𝓵 (-μ2) (-c)) := by
|
||||
exact (Real.mul_self_sqrt hd).symm
|
||||
refine (quadratic_eq_zero_iff (ne_of_gt h𝓵).symm hdd _).mpr ?_
|
||||
simp only [neg_neg, or_true, a]
|
||||
|
@ -258,8 +260,6 @@ lemma isBounded_𝓵_nonneg {μ2 𝓵 : ℝ} (h : IsBounded μ2 𝓵) :
|
|||
rw [hφ] at hc2
|
||||
linarith
|
||||
|
||||
|
||||
|
||||
section lowerBound
|
||||
/-!
|
||||
|
||||
|
@ -310,7 +310,6 @@ variable (h𝓵 : 0 < 𝓵)
|
|||
|
||||
-/
|
||||
|
||||
|
||||
include h𝓵
|
||||
lemma normSq_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue