refactor: Replace FDiscrete with FD
This commit is contained in:
parent
bfaaf36485
commit
5acf22c479
9 changed files with 223 additions and 223 deletions
|
@ -88,7 +88,7 @@ def complexLorentzTensor : TensorSpecies where
|
|||
G_group := inferInstance
|
||||
k := ℂ
|
||||
k_commRing := inferInstance
|
||||
FDiscrete := Discrete.functor fun c =>
|
||||
FD := Discrete.functor fun c =>
|
||||
match c with
|
||||
| Color.upL => Fermion.leftHanded
|
||||
| Color.downL => Fermion.altLeftHanded
|
||||
|
|
|
@ -51,11 +51,11 @@ lemma perm_basisVector_cast {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|||
simp only [Functor.const_obj_obj, OverColor.mk_hom] at h1
|
||||
rw [h1]
|
||||
|
||||
/-! TODO: Generalize `basis_eq_FDiscrete`. -/
|
||||
lemma basis_eq_FDiscrete {n : ℕ} (c : Fin n → complexLorentzTensor.C)
|
||||
/-! TODO: Generalize `basis_eq_FD`. -/
|
||||
lemma basis_eq_FD {n : ℕ} (c : Fin n → complexLorentzTensor.C)
|
||||
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) (i : Fin n)
|
||||
(h : { as := c i } = { as := c1 }) :
|
||||
(complexLorentzTensor.FDiscrete.map (eqToHom h)).hom
|
||||
(complexLorentzTensor.FD.map (eqToHom h)).hom
|
||||
(complexLorentzTensor.basis (c i) (b i)) =
|
||||
(complexLorentzTensor.basis c1 (Fin.cast (by simp_all) (b i))) := by
|
||||
have h' : c i = c1 := by
|
||||
|
@ -77,7 +77,7 @@ lemma perm_basisVector {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|||
funext i
|
||||
simp only [OverColor.mk_hom, OverColor.lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply]
|
||||
rw [basis_eq_FDiscrete]
|
||||
rw [basis_eq_FD]
|
||||
|
||||
lemma perm_basisVector_tree {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
{c1 : Fin m → complexLorentzTensor.C} (σ : OverColor.mk c ⟶ OverColor.mk c1)
|
||||
|
@ -120,7 +120,7 @@ lemma contr_basisVector {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.
|
|||
rw [basisVector]
|
||||
erw [TensorSpecies.contrMap_tprod]
|
||||
congr 1
|
||||
rw [basis_eq_FDiscrete]
|
||||
rw [basis_eq_FD]
|
||||
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
|
@ -181,7 +181,7 @@ lemma prod_basisVector {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|||
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
tensorNode_tensor]
|
||||
have h1 := OverColor.lift.μ_tmul_tprod_mk complexLorentzTensor.FDiscrete
|
||||
have h1 := OverColor.lift.μ_tmul_tprod_mk complexLorentzTensor.FD
|
||||
(fun i => (complexLorentzTensor.basis (c i)) (b i))
|
||||
(fun i => (complexLorentzTensor.basis (c1 i)) (b1 i))
|
||||
erw [h1, OverColor.lift.map_tprod]
|
||||
|
|
|
@ -53,52 +53,52 @@ structure TensorSpecies where
|
|||
C : Type
|
||||
/-- A functor from `C` to `Rep k G` giving our building block representations.
|
||||
Equivalently a function `C → Re k G`. -/
|
||||
FDiscrete : Discrete C ⥤ Rep k G
|
||||
FD : Discrete C ⥤ Rep k G
|
||||
/-- A specification of the dimension of each color in C. This will be used for explicit
|
||||
evaluation of tensors. -/
|
||||
repDim : C → ℕ
|
||||
/-- repDim is not zero for any color. This allows casting of `ℕ` to `Fin (S.repDim c)`. -/
|
||||
repDim_neZero (c : C) : NeZero (repDim c)
|
||||
/-- A basis for each Module, determined by the evaluation map. -/
|
||||
basis : (c : C) → Basis (Fin (repDim c)) k (FDiscrete.obj (Discrete.mk c)).V
|
||||
basis : (c : C) → Basis (Fin (repDim c)) k (FD.obj (Discrete.mk c)).V
|
||||
/-- A map from `C` to `C`. An involution. -/
|
||||
τ : C → C
|
||||
/-- The condition that `τ` is an involution. -/
|
||||
τ_involution : Function.Involutive τ
|
||||
/-- The natural transformation describing contraction. -/
|
||||
contr : OverColor.Discrete.pairτ FDiscrete τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
|
||||
contr : OverColor.Discrete.pairτ FD τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
|
||||
/-- Contraction is symmetric with respect to duals. -/
|
||||
contr_tmul_symm (c : C) (x : FDiscrete.obj (Discrete.mk c))
|
||||
(y : FDiscrete.obj (Discrete.mk (τ c))) :
|
||||
contr_tmul_symm (c : C) (x : FD.obj (Discrete.mk c))
|
||||
(y : FD.obj (Discrete.mk (τ c))) :
|
||||
(contr.app (Discrete.mk c)).hom (x ⊗ₜ[k] y) = (contr.app (Discrete.mk (τ c))).hom
|
||||
(y ⊗ₜ (FDiscrete.map (Discrete.eqToHom (τ_involution c).symm)).hom x)
|
||||
(y ⊗ₜ (FD.map (Discrete.eqToHom (τ_involution c).symm)).hom x)
|
||||
/-- The natural transformation describing the unit. -/
|
||||
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FDiscrete τ
|
||||
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FD τ
|
||||
/-- The unit is symmetric. -/
|
||||
unit_symm (c : C) :
|
||||
((unit.app (Discrete.mk c)).hom (1 : k)) =
|
||||
((FDiscrete.obj (Discrete.mk (τ (c)))) ◁
|
||||
(FDiscrete.map (Discrete.eqToHom (τ_involution c)))).hom
|
||||
((β_ (FDiscrete.obj (Discrete.mk (τ (τ c)))) (FDiscrete.obj (Discrete.mk (τ (c))))).hom.hom
|
||||
((FD.obj (Discrete.mk (τ (c)))) ◁
|
||||
(FD.map (Discrete.eqToHom (τ_involution c)))).hom
|
||||
((β_ (FD.obj (Discrete.mk (τ (τ c)))) (FD.obj (Discrete.mk (τ (c))))).hom.hom
|
||||
((unit.app (Discrete.mk (τ c))).hom (1 : k)))
|
||||
/-- Contraction with unit leaves invariant. -/
|
||||
contr_unit (c : C) (x : FDiscrete.obj (Discrete.mk (c))) :
|
||||
(λ_ (FDiscrete.obj (Discrete.mk (c)))).hom.hom
|
||||
(((contr.app (Discrete.mk c)) ▷ (FDiscrete.obj (Discrete.mk (c)))).hom
|
||||
((α_ _ _ (FDiscrete.obj (Discrete.mk (c)))).inv.hom
|
||||
contr_unit (c : C) (x : FD.obj (Discrete.mk (c))) :
|
||||
(λ_ (FD.obj (Discrete.mk (c)))).hom.hom
|
||||
(((contr.app (Discrete.mk c)) ▷ (FD.obj (Discrete.mk (c)))).hom
|
||||
((α_ _ _ (FD.obj (Discrete.mk (c)))).inv.hom
|
||||
(x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x
|
||||
/-- The natural transformation describing the metric. -/
|
||||
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FDiscrete
|
||||
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FD
|
||||
/-- On contracting metrics we get back the unit. -/
|
||||
contr_metric (c : C) :
|
||||
(β_ (FDiscrete.obj (Discrete.mk c)) (FDiscrete.obj (Discrete.mk (τ c)))).hom.hom
|
||||
(((FDiscrete.obj (Discrete.mk c)) ◁ (λ_ (FDiscrete.obj (Discrete.mk (τ c)))).hom).hom
|
||||
(((FDiscrete.obj (Discrete.mk c)) ◁ ((contr.app (Discrete.mk c)) ▷
|
||||
(FDiscrete.obj (Discrete.mk (τ c))))).hom
|
||||
(((FDiscrete.obj (Discrete.mk c)) ◁ (α_ (FDiscrete.obj (Discrete.mk (c)))
|
||||
(FDiscrete.obj (Discrete.mk (τ c))) (FDiscrete.obj (Discrete.mk (τ c)))).inv).hom
|
||||
((α_ (FDiscrete.obj (Discrete.mk (c))) (FDiscrete.obj (Discrete.mk (c)))
|
||||
(FDiscrete.obj (Discrete.mk (τ c)) ⊗ FDiscrete.obj (Discrete.mk (τ c)))).hom.hom
|
||||
(β_ (FD.obj (Discrete.mk c)) (FD.obj (Discrete.mk (τ c)))).hom.hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ (λ_ (FD.obj (Discrete.mk (τ c)))).hom).hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ ((contr.app (Discrete.mk c)) ▷
|
||||
(FD.obj (Discrete.mk (τ c))))).hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ (α_ (FD.obj (Discrete.mk (c)))
|
||||
(FD.obj (Discrete.mk (τ c))) (FD.obj (Discrete.mk (τ c)))).inv).hom
|
||||
((α_ (FD.obj (Discrete.mk (c))) (FD.obj (Discrete.mk (c)))
|
||||
(FD.obj (Discrete.mk (τ c)) ⊗ FD.obj (Discrete.mk (τ c)))).hom.hom
|
||||
((metric.app (Discrete.mk c)).hom (1 : k) ⊗ₜ[k]
|
||||
(metric.app (Discrete.mk (τ c))).hom (1 : k))))))
|
||||
= (unit.app (Discrete.mk c)).hom (1 : k)
|
||||
|
@ -117,10 +117,10 @@ instance : Group S.G := S.G_group
|
|||
instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c
|
||||
|
||||
/-- The lift of the functor `S.F` to a monoidal functor. -/
|
||||
def F : BraidedFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FDiscrete
|
||||
def F : BraidedFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FD
|
||||
|
||||
/- The definition of `F` as a lemma. -/
|
||||
lemma F_def : F S = (OverColor.lift).obj S.FDiscrete := rfl
|
||||
lemma F_def : F S = (OverColor.lift).obj S.FD := rfl
|
||||
|
||||
lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ}
|
||||
|
@ -143,24 +143,24 @@ lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.s
|
|||
exact (Fin.succAbove_ne i j).symm
|
||||
|
||||
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
|
||||
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FDiscrete`. -/
|
||||
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FD`. -/
|
||||
def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
|
||||
(OverColor.Discrete.pairτ S.FDiscrete S.τ).obj { as := c i } := by
|
||||
(OverColor.Discrete.pairτ S.FD S.τ).obj { as := c i } := by
|
||||
apply (S.F.mapIso
|
||||
(OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
|
||||
apply (S.F.μIso _ _).symm.trans
|
||||
apply tensorIso ?_ ?_
|
||||
· symm
|
||||
apply (OverColor.forgetLiftApp S.FDiscrete (c i)).symm.trans
|
||||
apply (OverColor.forgetLiftApp S.FD (c i)).symm.trans
|
||||
apply S.F.mapIso
|
||||
apply OverColor.mkIso
|
||||
funext x
|
||||
fin_cases x
|
||||
rfl
|
||||
· symm
|
||||
apply (OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).symm.trans
|
||||
apply (OverColor.forgetLiftApp S.FD (S.τ (c i))).symm.trans
|
||||
apply S.F.mapIso
|
||||
apply OverColor.mkIso
|
||||
funext x
|
||||
|
@ -169,11 +169,11 @@ def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
|
||||
lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : S.FDiscrete.obj { as := c i })
|
||||
(y : S.FDiscrete.obj { as := S.τ (c i) }) :
|
||||
(x : S.FD.obj { as := c i })
|
||||
(y : S.FD.obj { as := S.τ (c i) }) :
|
||||
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
|
||||
PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map
|
||||
(eqToHom (by simp [h]))).hom y) := by
|
||||
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
|
||||
|
@ -186,29 +186,29 @@ lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((S.F.μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom
|
||||
((((OverColor.forgetLiftApp S.FDiscrete (c i)).inv.hom x) ⊗ₜ[S.k]
|
||||
((OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).inv.hom y))))) = _
|
||||
((((OverColor.forgetLiftApp S.FD (c i)).inv.hom x) ⊗ₜ[S.k]
|
||||
((OverColor.forgetLiftApp S.FD (S.τ (c i))).inv.hom y))))) = _
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue]
|
||||
erw [OverColor.forgetLiftAppV_symm_apply,
|
||||
OverColor.forgetLiftAppV_symm_apply S.FDiscrete (S.τ (c i))]
|
||||
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum
|
||||
OverColor.forgetLiftAppV_symm_apply S.FD (S.τ (c i))]
|
||||
change ((OverColor.lift.obj S.FD).map (OverColor.mkSum
|
||||
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
(((OverColor.lift.obj S.FDiscrete).μ (OverColor.mk fun _ => c i)
|
||||
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
(((OverColor.lift.obj S.FD).μ (OverColor.mk fun _ => c i)
|
||||
(OverColor.mk fun _ => S.τ (c i))).hom
|
||||
(((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _
|
||||
rw [OverColor.lift.obj_μ_tprod_tmul S.FDiscrete]
|
||||
change ((OverColor.lift.obj S.FDiscrete).map
|
||||
rw [OverColor.lift.obj_μ_tprod_tmul S.FD]
|
||||
change ((OverColor.lift.obj S.FD).map
|
||||
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FDiscrete]
|
||||
change ((OverColor.lift.obj S.FDiscrete).map
|
||||
rw [OverColor.lift.map_tprod S.FD]
|
||||
change ((OverColor.lift.obj S.FD).map
|
||||
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((PiTensorProduct.tprod S.k _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FDiscrete]
|
||||
rw [OverColor.lift.map_tprod S.FD]
|
||||
apply congrArg
|
||||
funext r
|
||||
match r with
|
||||
|
@ -232,10 +232,10 @@ lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
|
||||
lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : (k : Fin 1 ⊕ Fin 1) → (S.FDiscrete.obj
|
||||
(x : (k : Fin 1 ⊕ Fin 1) → (S.FD.obj
|
||||
{ as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) :
|
||||
(S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) =
|
||||
x (Sum.inl 0) ⊗ₜ[S.k] ((S.FDiscrete.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
|
||||
x (Sum.inl 0) ⊗ₜ[S.k] ((S.FD.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
|
||||
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
|
||||
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
|
||||
(PiTensorProduct.tprod S.k x)
|
||||
|
@ -250,7 +250,7 @@ lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
| Sum.inr 0 =>
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
|
||||
Discrete.functor_obj_eq_as]
|
||||
change _ = ((S.FDiscrete.map (eqToHom _)) ≫ (S.FDiscrete.map (eqToHom _))).hom (x (Sum.inr 0))
|
||||
change _ = ((S.FD.map (eqToHom _)) ≫ (S.FD.map (eqToHom _))).hom (x (Sum.inr 0))
|
||||
rw [← Functor.map_comp]
|
||||
simp
|
||||
exact h
|
||||
|
@ -259,9 +259,9 @@ lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
|
||||
def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj
|
||||
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FD S.τ).obj
|
||||
(Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
|
||||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <| by
|
||||
|
@ -300,17 +300,17 @@ def castFin0ToField {c : Fin 0 → S.C} : (S.F.obj (OverColor.mk c)).V →ₗ[S.
|
|||
(PiTensorProduct.isEmptyEquiv (Fin 0)).toLinearMap
|
||||
|
||||
lemma castFin0ToField_tprod {c : Fin 0 → S.C}
|
||||
(x : (i : Fin 0) → S.FDiscrete.obj (Discrete.mk (c i))) :
|
||||
(x : (i : Fin 0) → S.FD.obj (Discrete.mk (c i))) :
|
||||
castFin0ToField S (PiTensorProduct.tprod S.k x) = 1 := by
|
||||
simp only [castFin0ToField, mk_hom, Functor.id_obj, LinearEquiv.coe_coe]
|
||||
erw [PiTensorProduct.isEmptyEquiv_apply_tprod]
|
||||
|
||||
lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : (i : Fin n.succ.succ) → S.FDiscrete.obj (Discrete.mk (c i))) :
|
||||
(x : (i : Fin n.succ.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
|
||||
(S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k]
|
||||
(S.FDiscrete.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
|
||||
(S.FD.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
|
||||
• (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) :
|
||||
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by
|
||||
rw [contrMap, contrIso]
|
||||
|
@ -321,54 +321,54 @@ lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
|
||||
Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as]
|
||||
change (λ_ ((lift.obj S.FDiscrete).obj _)).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
|
||||
change (λ_ ((lift.obj S.FD).obj _)).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FDiscrete).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)
|
||||
∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
||||
(((lift.obj S.FDiscrete).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) x)))))) = _
|
||||
rw [lift.map_tprod]
|
||||
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷
|
||||
((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FDiscrete).μIso (OverColor.mk
|
||||
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso (OverColor.mk
|
||||
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FDiscrete _)
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm i_1))))))) = _
|
||||
rw [lift.map_tprod]
|
||||
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FDiscrete).μIso
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FDiscrete _)
|
||||
((lift.discreteFunctorMapEqIso S.FDiscrete _)
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
((lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm i_1)))))))) = _
|
||||
rw [lift.μIso_inv_tprod]
|
||||
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom
|
||||
((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FDiscrete _)
|
||||
((lift.discreteFunctorMapEqIso S.FDiscrete _) (x
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
((lift.discreteFunctorMapEqIso S.FD _) (x
|
||||
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm
|
||||
(Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FDiscrete _) ((lift.discreteFunctorMapEqIso S.FDiscrete _)
|
||||
(lift.discreteFunctorMapEqIso S.FD _) ((lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv
|
||||
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _
|
||||
|
@ -390,12 +390,12 @@ lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
rfl
|
||||
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
change (S.FDiscrete.map (eqToHom _)).hom
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
(x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue]
|
||||
have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FDiscrete.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
(S.FD.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FD.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
subst hbd
|
||||
rfl
|
||||
refine h1' ?_ ?_ ?_
|
||||
|
@ -408,13 +408,13 @@ lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
|
||||
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
change (S.FDiscrete.map (eqToHom _)).hom
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
|
||||
simp only [Nat.succ_eq_add_one]
|
||||
have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d))
|
||||
= (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d
|
||||
have h1' {a b : Fin n.succ.succ} (h : a = b) :
|
||||
(S.FDiscrete.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
||||
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
||||
subst h
|
||||
simp
|
||||
exact h1' h1
|
||||
|
@ -428,46 +428,46 @@ lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ`
|
||||
allowing us to undertake evaluation. -/
|
||||
def evalIso {n : ℕ} (c : Fin n.succ → S.C)
|
||||
(i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FDiscrete.obj (Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove)) :=
|
||||
(i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FD.obj (Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)) :=
|
||||
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractOne i))).trans <|
|
||||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <|
|
||||
tensorIso
|
||||
((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; rfl))).trans
|
||||
(OverColor.forgetLiftApp S.FDiscrete (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
(OverColor.forgetLiftApp S.FD (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
|
||||
lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ)
|
||||
(x : (i : Fin n.succ) → S.FDiscrete.obj (Discrete.mk (c i))) :
|
||||
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.evalIso c i).hom.hom (PiTensorProduct.tprod S.k x) =
|
||||
x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, F_def, evalIso,
|
||||
Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
|
||||
Action.instMonoidalCategory_tensorHom_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
change (((lift.obj S.FDiscrete).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FDiscrete (c i)).hom.hom ⊗
|
||||
((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FDiscrete).μIso
|
||||
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom ⊗
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
|
||||
(((lift.obj S.FDiscrete).map (equivToIso (HepLean.Fin.finExtractOne i)).hom).hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractOne i)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.map_tprod]
|
||||
change (((lift.obj S.FDiscrete).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FDiscrete (c i)).hom.hom ⊗
|
||||
((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FDiscrete).μIso
|
||||
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom ⊗
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
|
||||
(((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.map_tprod]
|
||||
change ((TensorProduct.map (((lift.obj S.FDiscrete).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FDiscrete (c i)).hom.hom)
|
||||
((lift.obj S.FDiscrete).map (mkIso _).hom).hom))
|
||||
(((lift.obj S.FDiscrete).μIso
|
||||
change ((TensorProduct.map (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom)
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom))
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
((((PiTensorProduct.tprod S.k) _)))) =_
|
||||
|
@ -479,8 +479,8 @@ lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ)
|
|||
instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm,
|
||||
LinearMap.coe_comp, Sum.elim_inr]
|
||||
congr 1
|
||||
· change (forgetLiftApp S.FDiscrete (c i)).hom.hom
|
||||
(((lift.obj S.FDiscrete).map (mkIso _).hom).hom
|
||||
· change (forgetLiftApp S.FD (c i)).hom.hom
|
||||
(((lift.obj S.FD).map (mkIso _).hom).hom
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
rw [lift.map_tprod]
|
||||
rw [forgetLiftApp_hom_hom_apply_eq]
|
||||
|
@ -497,10 +497,10 @@ lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ)
|
|||
simp only [lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv,
|
||||
eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
change (S.FDiscrete.map (eqToHom _)).hom
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
(x ((HepLean.Fin.finExtractOne i).symm ((Sum.inr k)))) = _
|
||||
have h1' {a b : Fin n.succ} (h : a = b) :
|
||||
(S.FDiscrete.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
||||
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
||||
subst h
|
||||
simp
|
||||
refine h1' ?_
|
||||
|
@ -510,7 +510,7 @@ lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ)
|
|||
Important Note: This is not a morphism in the category of representations. In general,
|
||||
it cannot be lifted thereto. -/
|
||||
def evalLinearMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
|
||||
S.FDiscrete.obj { as := c i } →ₗ[S.k] S.k where
|
||||
S.FD.obj { as := c i } →ₗ[S.k] S.k where
|
||||
toFun := fun v => (S.basis (c i)).repr v e
|
||||
map_add' := by simp
|
||||
map_smul' := by simp
|
||||
|
@ -526,7 +526,7 @@ def evalMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repD
|
|||
ModuleCat.asHom (TensorProduct.lid S.k _).toLinearMap
|
||||
|
||||
lemma evalMap_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i)))
|
||||
(x : (i : Fin n.succ) → S.FDiscrete.obj (Discrete.mk (c i))) :
|
||||
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.evalMap i e) (PiTensorProduct.tprod S.k x) =
|
||||
(((S.basis (c i)).repr (x i) e) : S.k) •
|
||||
(PiTensorProduct.tprod S.k
|
||||
|
@ -536,10 +536,10 @@ lemma evalMap_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin
|
|||
Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor, Action.forget_obj, Functor.id_obj, mk_hom,
|
||||
Function.comp_apply, ModuleCat.coe_comp]
|
||||
erw [evalIso_tprod]
|
||||
change ((TensorProduct.lid S.k ↑((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove))).V))
|
||||
change ((TensorProduct.lid S.k ↑((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove))).V))
|
||||
(((TensorProduct.map (S.evalLinearMap i e) LinearMap.id))
|
||||
(((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FDiscrete.obj { as := c i })
|
||||
((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove)))).inv
|
||||
(((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FD.obj { as := c i })
|
||||
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)))).inv
|
||||
(x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _
|
||||
simp only [Nat.succ_eq_add_one, Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor,
|
||||
Action.forget_obj, Action.instMonoidalCategory_tensorObj_V, MonoidalFunctor.μIso,
|
||||
|
@ -591,37 +591,37 @@ open TensorProduct
|
|||
-/
|
||||
|
||||
/-- A node consisting of a single vector. -/
|
||||
def vecNode {c : S.C} (v : S.FDiscrete.obj (Discrete.mk c)) : TensorTree S ![c] :=
|
||||
def vecNode {c : S.C} (v : S.FD.obj (Discrete.mk c)) : TensorTree S ![c] :=
|
||||
perm (OverColor.mkIso (by
|
||||
ext x; fin_cases x; rfl)).hom
|
||||
(tensorNode ((OverColor.forgetLiftApp S.FDiscrete c).symm.hom.hom v))
|
||||
(tensorNode ((OverColor.forgetLiftApp S.FD c).symm.hom.hom v))
|
||||
|
||||
/-- The node `vecNode` of a tensor tree, with all arguments explicit. -/
|
||||
abbrev vecNodeE (S : TensorSpecies) (c1 : S.C)
|
||||
(v : (S.FDiscrete.obj (Discrete.mk c1)).V) :
|
||||
(v : (S.FD.obj (Discrete.mk c1)).V) :
|
||||
TensorTree S ![c1] := vecNode v
|
||||
|
||||
/-- A node consisting of a two tensor. -/
|
||||
def twoNode {c1 c2 : S.C} (t : (S.FDiscrete.obj (Discrete.mk c1) ⊗
|
||||
S.FDiscrete.obj (Discrete.mk c2)).V) :
|
||||
def twoNode {c1 c2 : S.C} (t : (S.FD.obj (Discrete.mk c1) ⊗
|
||||
S.FD.obj (Discrete.mk c2)).V) :
|
||||
TensorTree S ![c1, c2] :=
|
||||
(tensorNode ((OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom t))
|
||||
(tensorNode ((OverColor.Discrete.pairIsoSep S.FD).hom.hom t))
|
||||
|
||||
/-- The node `twoNode` of a tensor tree, with all arguments explicit. -/
|
||||
abbrev twoNodeE (S : TensorSpecies) (c1 c2 : S.C)
|
||||
(v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) :
|
||||
(v : (S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2)).V) :
|
||||
TensorTree S ![c1, c2] := twoNode v
|
||||
|
||||
/-- A node consisting of a three tensor. -/
|
||||
def threeNode {c1 c2 c3 : S.C} (t : (S.FDiscrete.obj (Discrete.mk c1) ⊗
|
||||
S.FDiscrete.obj (Discrete.mk c2) ⊗ S.FDiscrete.obj (Discrete.mk c3)).V) :
|
||||
def threeNode {c1 c2 c3 : S.C} (t : (S.FD.obj (Discrete.mk c1) ⊗
|
||||
S.FD.obj (Discrete.mk c2) ⊗ S.FD.obj (Discrete.mk c3)).V) :
|
||||
TensorTree S ![c1, c2, c3] :=
|
||||
(tensorNode ((OverColor.Discrete.tripleIsoSep S.FDiscrete).hom.hom t))
|
||||
(tensorNode ((OverColor.Discrete.tripleIsoSep S.FD).hom.hom t))
|
||||
|
||||
/-- The node `threeNode` of a tensor tree, with all arguments explicit. -/
|
||||
abbrev threeNodeE (S : TensorSpecies) (c1 c2 c3 : S.C)
|
||||
(v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
||||
S.FDiscrete.obj (Discrete.mk c3)).V) :
|
||||
(v : (S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗
|
||||
S.FD.obj (Discrete.mk c3)).V) :
|
||||
TensorTree S ![c1, c2, c3] := threeNode v
|
||||
|
||||
/-- A general constant node. -/
|
||||
|
@ -629,29 +629,29 @@ def constNode {n : ℕ} {c : Fin n → S.C} (T : 𝟙_ (Rep S.k S.G) ⟶ S.F.obj
|
|||
TensorTree S c := tensorNode (T.hom (1 : S.k))
|
||||
|
||||
/-- A constant vector. -/
|
||||
def constVecNode {c : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c)) :
|
||||
def constVecNode {c : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c)) :
|
||||
TensorTree S ![c] := vecNode (v.hom (1 : S.k))
|
||||
|
||||
/-- A constant two tensor (e.g. metric and unit). -/
|
||||
def constTwoNode {c1 c2 : S.C}
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2)) :
|
||||
TensorTree S ![c1, c2] := twoNode (v.hom (1 : S.k))
|
||||
|
||||
/-- The node `constTwoNode` of a tensor tree, with all arguments explicit. -/
|
||||
abbrev constTwoNodeE (S : TensorSpecies) (c1 c2 : S.C)
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2)) :
|
||||
TensorTree S ![c1, c2] := constTwoNode v
|
||||
|
||||
/-- A constant three tensor (e.g. Pauli matrices). -/
|
||||
def constThreeNode {c1 c2 c3 : S.C}
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
||||
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] :=
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗
|
||||
S.FD.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] :=
|
||||
threeNode (v.hom (1 : S.k))
|
||||
|
||||
/-- The node `constThreeNode` of a tensor tree, with all arguments explicit. -/
|
||||
abbrev constThreeNodeE (S : TensorSpecies) (c1 c2 c3 : S.C)
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
||||
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] :=
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗
|
||||
S.FD.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] :=
|
||||
constThreeNode v
|
||||
|
||||
/-!
|
||||
|
@ -701,17 +701,17 @@ lemma tensorNode_tensor {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) :
|
|||
|
||||
@[simp]
|
||||
lemma constTwoNode_tensor {c1 c2 : S.C}
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2)) :
|
||||
(constTwoNode v).tensor =
|
||||
(OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (v.hom (1 : S.k)) :=
|
||||
(OverColor.Discrete.pairIsoSep S.FD).hom.hom (v.hom (1 : S.k)) :=
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma constThreeNode_tensor {c1 c2 c3 : S.C}
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
||||
S.FDiscrete.obj (Discrete.mk c3)) :
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗
|
||||
S.FD.obj (Discrete.mk c3)) :
|
||||
(constThreeNode v).tensor =
|
||||
(OverColor.Discrete.tripleIsoSep S.FDiscrete).hom.hom (v.hom (1 : S.k)) :=
|
||||
(OverColor.Discrete.tripleIsoSep S.FD).hom.hom (v.hom (1 : S.k)) :=
|
||||
rfl
|
||||
|
||||
lemma prod_tensor {c1 : Fin n → S.C} {c2 : Fin m → S.C} (t1 : TensorTree S c1)
|
||||
|
|
|
@ -304,29 +304,29 @@ lemma action_id {n : ℕ} {c : Fin n → S.C} (t : TensorTree S c) :
|
|||
simp only [action_tensor, map_one, LinearMap.one_apply]
|
||||
|
||||
lemma action_constTwoNode {c1 c2 : S.C}
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2))
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2))
|
||||
(g : S.G) : (action g (constTwoNode v)).tensor = (constTwoNode v).tensor := by
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, action_tensor, constTwoNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V]
|
||||
change ((Discrete.pairIsoSep S.FDiscrete).hom.hom ≫ (S.F.obj (OverColor.mk ![c1, c2])).ρ g)
|
||||
change ((Discrete.pairIsoSep S.FD).hom.hom ≫ (S.F.obj (OverColor.mk ![c1, c2])).ρ g)
|
||||
((v.hom _)) = _
|
||||
erw [← (Discrete.pairIsoSep S.FDiscrete).hom.comm g]
|
||||
change ((v.hom ≫ (S.FDiscrete.obj { as := c1 } ⊗ S.FDiscrete.obj { as := c2 }).ρ g) ≫
|
||||
(Discrete.pairIsoSep S.FDiscrete).hom.hom) _ =_
|
||||
erw [← (Discrete.pairIsoSep S.FD).hom.comm g]
|
||||
change ((v.hom ≫ (S.FD.obj { as := c1 } ⊗ S.FD.obj { as := c2 }).ρ g) ≫
|
||||
(Discrete.pairIsoSep S.FD).hom.hom) _ =_
|
||||
erw [← v.comm g]
|
||||
simp
|
||||
|
||||
lemma action_constThreeNode {c1 c2 c3 : S.C}
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
||||
S.FDiscrete.obj (Discrete.mk c3))
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗
|
||||
S.FD.obj (Discrete.mk c3))
|
||||
(g : S.G) : (action g (constThreeNode v)).tensor = (constThreeNode v).tensor := by
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, action_tensor, constThreeNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V]
|
||||
change ((Discrete.tripleIsoSep S.FDiscrete).hom.hom ≫ (S.F.obj (OverColor.mk ![c1, c2, c3])).ρ g)
|
||||
change ((Discrete.tripleIsoSep S.FD).hom.hom ≫ (S.F.obj (OverColor.mk ![c1, c2, c3])).ρ g)
|
||||
((v.hom _)) = _
|
||||
erw [← (Discrete.tripleIsoSep S.FDiscrete).hom.comm g]
|
||||
change ((v.hom ≫ (S.FDiscrete.obj { as := c1 } ⊗ S.FDiscrete.obj { as := c2 } ⊗
|
||||
S.FDiscrete.obj { as := c3 }).ρ g) ≫ (Discrete.tripleIsoSep S.FDiscrete).hom.hom) _ =_
|
||||
erw [← (Discrete.tripleIsoSep S.FD).hom.comm g]
|
||||
change ((v.hom ≫ (S.FD.obj { as := c1 } ⊗ S.FD.obj { as := c2 } ⊗
|
||||
S.FD.obj { as := c3 }).ρ g) ≫ (Discrete.tripleIsoSep S.FD).hom.hom) _ =_
|
||||
erw [← v.comm g]
|
||||
simp
|
||||
|
||||
|
|
|
@ -158,18 +158,18 @@ def contrSwapHom : (OverColor.mk ((c ∘ q.swap.i.succAbove ∘ q.swap.j.succAbo
|
|||
(mkIso (funext fun x => congrArg c (swap_map_eq q x))).hom
|
||||
|
||||
lemma contrSwapHom_contrMapSnd_tprod (x : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })) :
|
||||
((lift.obj S.FDiscrete).map q.contrSwapHom).hom
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c).hom i })) :
|
||||
((lift.obj S.FD).map q.contrSwapHom).hom
|
||||
(q.swap.contrMapSnd.hom ((PiTensorProduct.tprod S.k) fun k =>
|
||||
x (q.swap.i.succAbove (q.swap.j.succAbove k)))) = ((S.castToField
|
||||
((S.contr.app { as := (c ∘ q.swap.i.succAbove ∘ q.swap.j.succAbove) q.swap.k }).hom
|
||||
(x (q.swap.i.succAbove (q.swap.j.succAbove q.swap.k)) ⊗ₜ[S.k]
|
||||
(S.FDiscrete.map (Discrete.eqToHom q.swap.hkl)).hom
|
||||
(S.FD.map (Discrete.eqToHom q.swap.hkl)).hom
|
||||
(x (q.swap.i.succAbove (q.swap.j.succAbove (q.swap.k.succAbove q.swap.l))))))) •
|
||||
((lift.obj S.FDiscrete).map q.contrSwapHom).hom ((PiTensorProduct.tprod S.k) fun k =>
|
||||
((lift.obj S.FD).map q.contrSwapHom).hom ((PiTensorProduct.tprod S.k) fun k =>
|
||||
x (q.swap.i.succAbove (q.swap.j.succAbove (q.swap.k.succAbove (q.swap.l.succAbove k)))))) := by
|
||||
rw [contrMapSnd,TensorSpecies.contrMap_tprod]
|
||||
change ((lift.obj S.FDiscrete).map q.contrSwapHom).hom
|
||||
change ((lift.obj S.FD).map q.contrSwapHom).hom
|
||||
(_ • ((PiTensorProduct.tprod S.k) fun k =>
|
||||
x (q.swap.i.succAbove (q.swap.j.succAbove
|
||||
(q.swap.k.succAbove (q.swap.l.succAbove k)))) :
|
||||
|
@ -179,10 +179,10 @@ lemma contrSwapHom_contrMapSnd_tprod (x : (i : (𝟭 Type).obj (OverColor.mk c).
|
|||
rfl
|
||||
|
||||
lemma contrSwapHom_tprod (x : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })) :
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c).hom i })) :
|
||||
((PiTensorProduct.tprod S.k)
|
||||
fun k => x (q.i.succAbove (q.j.succAbove (q.k.succAbove (q.l.succAbove k))))) =
|
||||
((lift.obj S.FDiscrete).map q.contrSwapHom).hom
|
||||
((lift.obj S.FD).map q.contrSwapHom).hom
|
||||
((PiTensorProduct.tprod S.k) fun k =>
|
||||
x (q.swap.i.succAbove (q.swap.j.succAbove (q.swap.k.succAbove (q.swap.l.succAbove k))))) := by
|
||||
rw [lift.map_tprod]
|
||||
|
@ -190,9 +190,9 @@ lemma contrSwapHom_tprod (x : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
|||
funext i
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Function.comp_apply]
|
||||
rw [lift.discreteFunctorMapEqIso]
|
||||
change _ = (S.FDiscrete.map (Discrete.eqToIso _).hom).hom _
|
||||
change _ = (S.FD.map (Discrete.eqToIso _).hom).hom _
|
||||
have h1' {a b : Fin n.succ.succ.succ.succ} (h : a = b) :
|
||||
x b = (S.FDiscrete.map (Discrete.eqToIso (by rw [h])).hom).hom (x a) := by
|
||||
x b = (S.FD.map (Discrete.eqToIso (by rw [h])).hom).hom (x a) := by
|
||||
subst h
|
||||
simp
|
||||
exact h1' (q.swap_map_eq i)
|
||||
|
@ -223,7 +223,7 @@ lemma contrMapFst_contrMapSnd_swap :
|
|||
q.contrMapSnd.hom ((PiTensorProduct.tprod S.k) fun k => x (q.i.succAbove (q.j.succAbove k))) =
|
||||
S.castToField
|
||||
_ •
|
||||
((lift.obj S.FDiscrete).map q.contrSwapHom).hom
|
||||
((lift.obj S.FD).map q.contrSwapHom).hom
|
||||
(q.swap.contrMapSnd.hom ((PiTensorProduct.tprod S.k)
|
||||
fun k => x (q.swap.i.succAbove (q.swap.j.succAbove k))))
|
||||
rw [contrMapSnd, TensorSpecies.contrMap_tprod, q.contrSwapHom_contrMapSnd_tprod]
|
||||
|
@ -235,8 +235,8 @@ lemma contrMapFst_contrMapSnd_swap :
|
|||
· congr 3
|
||||
have h1' {a b d: Fin n.succ.succ.succ.succ} (hbd : b = d) (h : c d = S.τ (c a))
|
||||
(h' : c b = S.τ (c a)) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FDiscrete.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
(S.FD.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FD.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
subst hbd
|
||||
rfl
|
||||
refine h1' ?_ ?_ ?_
|
||||
|
@ -251,9 +251,9 @@ lemma contrMapFst_contrMapSnd_swap :
|
|||
have h' {a a' b b' : Fin n.succ.succ.succ.succ} (hab : c b = S.τ (c a))
|
||||
(hab' : c b' = S.τ (c a')) (ha : a = a') (hb : b= b') :
|
||||
(S.contr.app { as := c a }).hom
|
||||
(x a ⊗ₜ[S.k] (S.FDiscrete.map (Discrete.eqToHom hab)).hom (x b)) =
|
||||
(x a ⊗ₜ[S.k] (S.FD.map (Discrete.eqToHom hab)).hom (x b)) =
|
||||
(S.contr.app { as := c a' }).hom (x a' ⊗ₜ[S.k]
|
||||
(S.FDiscrete.map (Discrete.eqToHom hab')).hom (x b')) := by
|
||||
(S.FD.map (Discrete.eqToHom hab')).hom (x b')) := by
|
||||
subst ha hb
|
||||
rfl
|
||||
apply h'
|
||||
|
|
|
@ -93,8 +93,8 @@ lemma contrMap_swap : q.contrMap = q.swap.contrMap ≫ S.F.map q.contrSwapHom :=
|
|||
· apply congrArg
|
||||
erw [S.contr_tmul_symm]
|
||||
have h1' : ∀ {a a' b c b' c'} (haa' : a = a')
|
||||
(_ : b = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(_ : b = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(S.contr.app a).hom (b ⊗ₜ[S.k] c) = (S.contr.app a').hom (b' ⊗ₜ[S.k] c') := by
|
||||
intro a a' b c b' c' haa' hbc hcc
|
||||
subst haa'
|
||||
|
@ -103,14 +103,14 @@ lemma contrMap_swap : q.contrMap = q.swap.contrMap ≫ S.F.map q.contrSwapHom :=
|
|||
· simp only [Discrete.mk.injEq]
|
||||
exact Eq.symm (swapI_color q)
|
||||
· rfl
|
||||
· change _ = ((S.FDiscrete.map (Discrete.eqToHom _)) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom
|
||||
· change _ = ((S.FD.map (Discrete.eqToHom _)) ≫ S.FD.map (Discrete.eqToHom _)).hom
|
||||
(x (q.swap.i.succAbove q.swap.j))
|
||||
rw [← S.FDiscrete.map_comp]
|
||||
rw [← S.FD.map_comp]
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
eqToHom_trans]
|
||||
have h1nn' {a b d: Fin n.succ.succ} (hbd : b = d) (h : c d = S.τ (S.τ (c a))) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FDiscrete.map (eqToHom (by
|
||||
(S.FD.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FD.map (eqToHom (by
|
||||
subst hbd
|
||||
simp_all only [Nat.succ_eq_add_one, forall_true_left, Discrete.functor_obj_eq_as,
|
||||
Function.comp_apply, Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V,
|
||||
|
@ -127,7 +127,7 @@ lemma contrMap_swap : q.contrMap = q.swap.contrMap ≫ S.F.map q.contrSwapHom :=
|
|||
apply congrArg
|
||||
funext k
|
||||
have h1' {a b : Fin n.succ.succ} (h : a = b) :
|
||||
x b = (S.FDiscrete.map (Discrete.eqToIso (by rw [h])).hom).hom (x a) := by
|
||||
x b = (S.FD.map (Discrete.eqToIso (by rw [h])).hom).hom (x a) := by
|
||||
subst h
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, eqToIso_refl, Iso.refl_hom, Discrete.functor_map_id,
|
||||
Action.id_hom, ModuleCat.id_apply]
|
||||
|
|
|
@ -32,13 +32,13 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom.hom
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
≫ ((Discrete.pairτ S.FD S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))).hom := by
|
||||
have h1 : (S.F.map (extractTwoAux' i j σ)) ≫ (S.contrFin1Fin1 c1 i j h).hom
|
||||
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
≫ ((Discrete.pairτ S.FD S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) := by
|
||||
erw [← CategoryTheory.Iso.eq_comp_inv]
|
||||
rw [CategoryTheory.Category.assoc]
|
||||
|
@ -51,7 +51,7 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, CategoryStruct.comp,
|
||||
extractOne_homToEquiv, Action.Hom.comp_hom, LinearMap.coe_comp]
|
||||
trans (S.F.map (extractTwoAux' i j σ)).hom (PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map
|
||||
(eqToHom (by
|
||||
simp only [Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
extractOne_homToEquiv, Fin.isValue, mk_hom, finExtractTwo_symm_inl_inr_apply,
|
||||
|
@ -72,10 +72,10 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
| Sum.inl 0 => rfl
|
||||
| Sum.inr 0 => rfl
|
||||
change _ = (S.contrFin1Fin1 c1 i j h).inv.hom
|
||||
((S.FDiscrete.map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i))).hom x ⊗ₜ[S.k]
|
||||
(S.FDiscrete.map (Discrete.eqToHom (congrArg S.τ (Hom.toEquiv_comp_inv_apply σ i)))).hom y)
|
||||
((S.FD.map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i))).hom x ⊗ₜ[S.k]
|
||||
(S.FD.map (Discrete.eqToHom (congrArg S.τ (Hom.toEquiv_comp_inv_apply σ i)))).hom y)
|
||||
rw [contrFin1Fin1_inv_tmul]
|
||||
change ((lift.obj S.FDiscrete).map (extractTwoAux' i j σ)).hom _ = _
|
||||
change ((lift.obj S.FD).map (extractTwoAux' i j σ)).hom _ = _
|
||||
rw [lift.map_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
|
@ -86,8 +86,8 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
extractOne_homToEquiv, lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom,
|
||||
Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, Discrete.functor_obj_eq_as,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y =
|
||||
((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
|
||||
change ((S.FD.map (eqToHom _)) ≫ S.FD.map (eqToHom _)).hom y =
|
||||
((S.FD.map (eqToHom _)) ≫ S.FD.map (eqToHom _)).hom y
|
||||
rw [← Functor.map_comp, ← Functor.map_comp]
|
||||
simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
eqToHom_trans]
|
||||
|
@ -154,7 +154,7 @@ lemma contrIso_comm_aux_3 {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
/-- A helper function used to proof the relation between perm and contr. -/
|
||||
def contrIsoComm {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :=
|
||||
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(((Discrete.pairτ S.FD S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶
|
||||
(Discrete.mk (c1 i)))) ⊗ (S.F.map (extractTwo i j σ)))
|
||||
|
||||
|
|
|
@ -56,15 +56,15 @@ theorem prod_comm (t : TensorTree S c) (t2 : TensorTree S c2) :
|
|||
apply congrArg
|
||||
apply congrArg
|
||||
change _ = (β_ (S.F.obj (OverColor.mk c2)) (S.F.obj (OverColor.mk c))).hom.hom
|
||||
((inv (lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom).hom
|
||||
((lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom.hom (t2.tensor ⊗ₜ[S.k] t.tensor)))
|
||||
((inv (lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).hom).hom
|
||||
((lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).hom.hom (t2.tensor ⊗ₜ[S.k] t.tensor)))
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
lift.objObj'_V_carrier, instMonoidalCategoryStruct_tensorObj_left,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, IsIso.Iso.inv_hom]
|
||||
change _ = (β_ (S.F.obj (OverColor.mk c2)) (S.F.obj (OverColor.mk c))).hom.hom
|
||||
(((lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom ≫
|
||||
(lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).inv).hom ((t2.tensor ⊗ₜ[S.k] t.tensor)))
|
||||
(((lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).hom ≫
|
||||
(lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).inv).hom ((t2.tensor ⊗ₜ[S.k] t.tensor)))
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Iso.hom_inv_id, Action.id_hom,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, lift.objObj'_V_carrier, mk_hom,
|
||||
|
|
|
@ -146,14 +146,14 @@ lemma contrMap_prod_tprod_aux
|
|||
(h : Sum.elim c c1 l' = Sum.elim (c ∘ q.i.succAbove ∘ q.j.succAbove) c1 l)
|
||||
(h' : l' = (Sum.map (q.i.succAbove ∘ q.j.succAbove) id l))
|
||||
(p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i }))
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c).hom i }))
|
||||
(q' : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })) :
|
||||
(lift.discreteSumEquiv S.FDiscrete l)
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c1).hom i })) :
|
||||
(lift.discreteSumEquiv S.FD l)
|
||||
(HepLean.PiTensorProduct.elimPureTensor
|
||||
(fun k => p (q.i.succAbove (q.j.succAbove k))) q' l) =
|
||||
(S.FDiscrete.map (eqToHom (by simp [h]))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete l')
|
||||
(S.FD.map (eqToHom (by simp [h]))).hom
|
||||
((lift.discreteSumEquiv S.FD l')
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' l')) := by
|
||||
subst h'
|
||||
match l with
|
||||
|
@ -168,9 +168,9 @@ lemma contrMap_prod_tprod_aux
|
|||
rfl
|
||||
|
||||
lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i }))
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c).hom i }))
|
||||
(q' : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })) :
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c1).hom i })) :
|
||||
(S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)) (OverColor.mk c1)).hom
|
||||
((q.contrMap.hom (PiTensorProduct.tprod S.k p)) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))
|
||||
|
@ -185,25 +185,25 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
|||
conv_rhs => rw [lift.obj_μ_tprod_tmul]
|
||||
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
|
||||
conv_lhs => rw [lift.obj_μ_tprod_tmul]
|
||||
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
|
||||
change _ = ((lift.obj S.FD).map (mkIso _).hom).hom
|
||||
(q.leftContr.contrMap.hom
|
||||
(((lift.obj S.FDiscrete).map (equivToIso leftContrEquivSuccSucc).hom).hom
|
||||
(((lift.obj S.FDiscrete).map (equivToIso finSumFinEquiv).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso leftContrEquivSuccSucc).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso finSumFinEquiv).hom).hom
|
||||
((PiTensorProduct.tprod S.k) _))))
|
||||
conv_rhs => rw [lift.map_tprod]
|
||||
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
|
||||
change _ = ((lift.obj S.FD).map (mkIso _).hom).hom
|
||||
(q.leftContr.contrMap.hom
|
||||
(((lift.obj S.FDiscrete).map (equivToIso leftContrEquivSuccSucc).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso leftContrEquivSuccSucc).hom).hom
|
||||
(((PiTensorProduct.tprod S.k) _))))
|
||||
conv_rhs => rw [lift.map_tprod]
|
||||
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
|
||||
change _ = ((lift.obj S.FD).map (mkIso _).hom).hom
|
||||
(q.leftContr.contrMap.hom
|
||||
((PiTensorProduct.tprod S.k) _))
|
||||
conv_rhs => rw [contrMap, TensorSpecies.contrMap_tprod]
|
||||
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
|
||||
have hL (a : Fin n.succ.succ) {b : Fin (n + 1 + 1) ⊕ Fin n1}
|
||||
(h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete b)
|
||||
(h : b = Sum.inl a) : p a = (S.FD.map (Discrete.eqToHom (by rw [h]; simp))).hom
|
||||
((lift.discreteSumEquiv S.FD b)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
|
||||
subst h
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, instMonoidalCategoryStruct_tensorObj_hom,
|
||||
|
@ -220,8 +220,8 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
|||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||||
have h1' : ∀ {a a' b c b' c'} (haa' : a = a')
|
||||
(_ : b = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(_ : b = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(S.contr.app a).hom (b ⊗ₜ[S.k] c) = (S.contr.app a').hom (b' ⊗ₜ[S.k] c') := by
|
||||
intro a a' b c b' c' haa' hbc hcc
|
||||
subst haa'
|
||||
|
@ -236,15 +236,15 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
|||
exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl)
|
||||
· simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
|
||||
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
|
||||
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫
|
||||
S.FDiscrete.map (Discrete.eqToHom _)).hom _
|
||||
rw [← S.FDiscrete.map_comp]
|
||||
change _ = (S.FD.map (Discrete.eqToHom _) ≫
|
||||
S.FD.map (Discrete.eqToHom _)).hom _
|
||||
rw [← S.FD.map_comp]
|
||||
simp only [eqToHom_trans]
|
||||
have h1 {a d : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1}
|
||||
(h1' : b = Sum.inl a) (h2' : c a = S.τ (c d)) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom h2')).hom (p a) =
|
||||
(S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete b)
|
||||
(S.FD.map (Discrete.eqToHom h2')).hom (p a) =
|
||||
(S.FD.map (eqToHom (by subst h1'; simpa using h2'))).hom
|
||||
((lift.discreteSumEquiv S.FD b)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
|
||||
subst h1'
|
||||
rfl
|
||||
|
@ -401,9 +401,9 @@ lemma sum_inr_succAbove_rightContrI_rightContrJ (k : Fin n) : (@finSumFinEquiv n
|
|||
simp
|
||||
|
||||
lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i }))
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c1).hom i }))
|
||||
(q' : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })) :
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c).hom i })) :
|
||||
(S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ (OverColor.mk c1) (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove))).hom
|
||||
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (q.contrMap.hom (PiTensorProduct.tprod S.k q')))) =
|
||||
|
@ -431,8 +431,8 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
|||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||||
have h1' : ∀ {a a' b c b' c'} (haa' : a = a')
|
||||
(_ : b = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(_ : b = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(S.contr.app a).hom (b ⊗ₜ[S.k] c) = (S.contr.app a').hom (b' ⊗ₜ[S.k] c') := by
|
||||
intro a a' b c b' c' haa' hbc hcc
|
||||
subst haa'
|
||||
|
@ -444,8 +444,8 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
|||
simp only [Nat.add_eq, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, equivToIso_homToEquiv,
|
||||
LinearEquiv.coe_coe]
|
||||
have hL (a : Fin n.succ.succ) {b : Fin n1 ⊕ Fin n.succ.succ}
|
||||
(h : b = Sum.inr a) : q' a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete b)
|
||||
(h : b = Sum.inr a) : q' a = (S.FD.map (Discrete.eqToHom (by rw [h]; simp))).hom
|
||||
((lift.discreteSumEquiv S.FD b)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
|
||||
subst h
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, instMonoidalCategoryStruct_tensorObj_hom,
|
||||
|
@ -457,15 +457,15 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
|||
finSumFinEquiv_symm_apply_natAdd]
|
||||
· simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
|
||||
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
|
||||
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫
|
||||
S.FDiscrete.map (Discrete.eqToHom _)).hom _
|
||||
rw [← S.FDiscrete.map_comp]
|
||||
change _ = (S.FD.map (Discrete.eqToHom _) ≫
|
||||
S.FD.map (Discrete.eqToHom _)).hom _
|
||||
rw [← S.FD.map_comp]
|
||||
simp only [Nat.add_eq, eqToHom_trans]
|
||||
have h1 {a d : Fin n.succ.succ} {b : Fin n1 ⊕ Fin (n + 1 + 1) }
|
||||
(h1' : b = Sum.inr a) (h2' : c a = S.τ (c d)) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom h2')).hom (q' a) =
|
||||
(S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete b)
|
||||
(S.FD.map (Discrete.eqToHom h2')).hom (q' a) =
|
||||
(S.FD.map (eqToHom (by subst h1'; simpa using h2'))).hom
|
||||
((lift.discreteSumEquiv S.FD b)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
|
||||
subst h1'
|
||||
rfl
|
||||
|
@ -489,11 +489,11 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
|||
(l' :Fin n1 ⊕ Fin n.succ.succ)
|
||||
(h : Sum.elim c1 c l' = Sum.elim c1 (c ∘ q.i.succAbove ∘ q.j.succAbove) l)
|
||||
(h' : l' = (Sum.map id (q.i.succAbove ∘ q.j.succAbove) l)) :
|
||||
(lift.discreteSumEquiv S.FDiscrete l)
|
||||
(lift.discreteSumEquiv S.FD l)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p
|
||||
(fun k => q' (q.i.succAbove (q.j.succAbove k))) l) =
|
||||
(S.FDiscrete.map (eqToHom (by simp [h]))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete l')
|
||||
(S.FD.map (eqToHom (by simp [h]))).hom
|
||||
((lift.discreteSumEquiv S.FD l')
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' l')) := by
|
||||
subst h'
|
||||
match l with
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue