refactor: Replace FDiscrete with FD
This commit is contained in:
parent
bfaaf36485
commit
5acf22c479
9 changed files with 223 additions and 223 deletions
|
@ -304,29 +304,29 @@ lemma action_id {n : ℕ} {c : Fin n → S.C} (t : TensorTree S c) :
|
|||
simp only [action_tensor, map_one, LinearMap.one_apply]
|
||||
|
||||
lemma action_constTwoNode {c1 c2 : S.C}
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2))
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2))
|
||||
(g : S.G) : (action g (constTwoNode v)).tensor = (constTwoNode v).tensor := by
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, action_tensor, constTwoNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V]
|
||||
change ((Discrete.pairIsoSep S.FDiscrete).hom.hom ≫ (S.F.obj (OverColor.mk ![c1, c2])).ρ g)
|
||||
change ((Discrete.pairIsoSep S.FD).hom.hom ≫ (S.F.obj (OverColor.mk ![c1, c2])).ρ g)
|
||||
((v.hom _)) = _
|
||||
erw [← (Discrete.pairIsoSep S.FDiscrete).hom.comm g]
|
||||
change ((v.hom ≫ (S.FDiscrete.obj { as := c1 } ⊗ S.FDiscrete.obj { as := c2 }).ρ g) ≫
|
||||
(Discrete.pairIsoSep S.FDiscrete).hom.hom) _ =_
|
||||
erw [← (Discrete.pairIsoSep S.FD).hom.comm g]
|
||||
change ((v.hom ≫ (S.FD.obj { as := c1 } ⊗ S.FD.obj { as := c2 }).ρ g) ≫
|
||||
(Discrete.pairIsoSep S.FD).hom.hom) _ =_
|
||||
erw [← v.comm g]
|
||||
simp
|
||||
|
||||
lemma action_constThreeNode {c1 c2 c3 : S.C}
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
|
||||
S.FDiscrete.obj (Discrete.mk c3))
|
||||
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗
|
||||
S.FD.obj (Discrete.mk c3))
|
||||
(g : S.G) : (action g (constThreeNode v)).tensor = (constThreeNode v).tensor := by
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, action_tensor, constThreeNode_tensor,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V]
|
||||
change ((Discrete.tripleIsoSep S.FDiscrete).hom.hom ≫ (S.F.obj (OverColor.mk ![c1, c2, c3])).ρ g)
|
||||
change ((Discrete.tripleIsoSep S.FD).hom.hom ≫ (S.F.obj (OverColor.mk ![c1, c2, c3])).ρ g)
|
||||
((v.hom _)) = _
|
||||
erw [← (Discrete.tripleIsoSep S.FDiscrete).hom.comm g]
|
||||
change ((v.hom ≫ (S.FDiscrete.obj { as := c1 } ⊗ S.FDiscrete.obj { as := c2 } ⊗
|
||||
S.FDiscrete.obj { as := c3 }).ρ g) ≫ (Discrete.tripleIsoSep S.FDiscrete).hom.hom) _ =_
|
||||
erw [← (Discrete.tripleIsoSep S.FD).hom.comm g]
|
||||
change ((v.hom ≫ (S.FD.obj { as := c1 } ⊗ S.FD.obj { as := c2 } ⊗
|
||||
S.FD.obj { as := c3 }).ρ g) ≫ (Discrete.tripleIsoSep S.FD).hom.hom) _ =_
|
||||
erw [← v.comm g]
|
||||
simp
|
||||
|
||||
|
|
|
@ -158,18 +158,18 @@ def contrSwapHom : (OverColor.mk ((c ∘ q.swap.i.succAbove ∘ q.swap.j.succAbo
|
|||
(mkIso (funext fun x => congrArg c (swap_map_eq q x))).hom
|
||||
|
||||
lemma contrSwapHom_contrMapSnd_tprod (x : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })) :
|
||||
((lift.obj S.FDiscrete).map q.contrSwapHom).hom
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c).hom i })) :
|
||||
((lift.obj S.FD).map q.contrSwapHom).hom
|
||||
(q.swap.contrMapSnd.hom ((PiTensorProduct.tprod S.k) fun k =>
|
||||
x (q.swap.i.succAbove (q.swap.j.succAbove k)))) = ((S.castToField
|
||||
((S.contr.app { as := (c ∘ q.swap.i.succAbove ∘ q.swap.j.succAbove) q.swap.k }).hom
|
||||
(x (q.swap.i.succAbove (q.swap.j.succAbove q.swap.k)) ⊗ₜ[S.k]
|
||||
(S.FDiscrete.map (Discrete.eqToHom q.swap.hkl)).hom
|
||||
(S.FD.map (Discrete.eqToHom q.swap.hkl)).hom
|
||||
(x (q.swap.i.succAbove (q.swap.j.succAbove (q.swap.k.succAbove q.swap.l))))))) •
|
||||
((lift.obj S.FDiscrete).map q.contrSwapHom).hom ((PiTensorProduct.tprod S.k) fun k =>
|
||||
((lift.obj S.FD).map q.contrSwapHom).hom ((PiTensorProduct.tprod S.k) fun k =>
|
||||
x (q.swap.i.succAbove (q.swap.j.succAbove (q.swap.k.succAbove (q.swap.l.succAbove k)))))) := by
|
||||
rw [contrMapSnd,TensorSpecies.contrMap_tprod]
|
||||
change ((lift.obj S.FDiscrete).map q.contrSwapHom).hom
|
||||
change ((lift.obj S.FD).map q.contrSwapHom).hom
|
||||
(_ • ((PiTensorProduct.tprod S.k) fun k =>
|
||||
x (q.swap.i.succAbove (q.swap.j.succAbove
|
||||
(q.swap.k.succAbove (q.swap.l.succAbove k)))) :
|
||||
|
@ -179,10 +179,10 @@ lemma contrSwapHom_contrMapSnd_tprod (x : (i : (𝟭 Type).obj (OverColor.mk c).
|
|||
rfl
|
||||
|
||||
lemma contrSwapHom_tprod (x : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })) :
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c).hom i })) :
|
||||
((PiTensorProduct.tprod S.k)
|
||||
fun k => x (q.i.succAbove (q.j.succAbove (q.k.succAbove (q.l.succAbove k))))) =
|
||||
((lift.obj S.FDiscrete).map q.contrSwapHom).hom
|
||||
((lift.obj S.FD).map q.contrSwapHom).hom
|
||||
((PiTensorProduct.tprod S.k) fun k =>
|
||||
x (q.swap.i.succAbove (q.swap.j.succAbove (q.swap.k.succAbove (q.swap.l.succAbove k))))) := by
|
||||
rw [lift.map_tprod]
|
||||
|
@ -190,9 +190,9 @@ lemma contrSwapHom_tprod (x : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
|||
funext i
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Function.comp_apply]
|
||||
rw [lift.discreteFunctorMapEqIso]
|
||||
change _ = (S.FDiscrete.map (Discrete.eqToIso _).hom).hom _
|
||||
change _ = (S.FD.map (Discrete.eqToIso _).hom).hom _
|
||||
have h1' {a b : Fin n.succ.succ.succ.succ} (h : a = b) :
|
||||
x b = (S.FDiscrete.map (Discrete.eqToIso (by rw [h])).hom).hom (x a) := by
|
||||
x b = (S.FD.map (Discrete.eqToIso (by rw [h])).hom).hom (x a) := by
|
||||
subst h
|
||||
simp
|
||||
exact h1' (q.swap_map_eq i)
|
||||
|
@ -223,7 +223,7 @@ lemma contrMapFst_contrMapSnd_swap :
|
|||
q.contrMapSnd.hom ((PiTensorProduct.tprod S.k) fun k => x (q.i.succAbove (q.j.succAbove k))) =
|
||||
S.castToField
|
||||
_ •
|
||||
((lift.obj S.FDiscrete).map q.contrSwapHom).hom
|
||||
((lift.obj S.FD).map q.contrSwapHom).hom
|
||||
(q.swap.contrMapSnd.hom ((PiTensorProduct.tprod S.k)
|
||||
fun k => x (q.swap.i.succAbove (q.swap.j.succAbove k))))
|
||||
rw [contrMapSnd, TensorSpecies.contrMap_tprod, q.contrSwapHom_contrMapSnd_tprod]
|
||||
|
@ -235,8 +235,8 @@ lemma contrMapFst_contrMapSnd_swap :
|
|||
· congr 3
|
||||
have h1' {a b d: Fin n.succ.succ.succ.succ} (hbd : b = d) (h : c d = S.τ (c a))
|
||||
(h' : c b = S.τ (c a)) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FDiscrete.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
(S.FD.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FD.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
subst hbd
|
||||
rfl
|
||||
refine h1' ?_ ?_ ?_
|
||||
|
@ -251,9 +251,9 @@ lemma contrMapFst_contrMapSnd_swap :
|
|||
have h' {a a' b b' : Fin n.succ.succ.succ.succ} (hab : c b = S.τ (c a))
|
||||
(hab' : c b' = S.τ (c a')) (ha : a = a') (hb : b= b') :
|
||||
(S.contr.app { as := c a }).hom
|
||||
(x a ⊗ₜ[S.k] (S.FDiscrete.map (Discrete.eqToHom hab)).hom (x b)) =
|
||||
(x a ⊗ₜ[S.k] (S.FD.map (Discrete.eqToHom hab)).hom (x b)) =
|
||||
(S.contr.app { as := c a' }).hom (x a' ⊗ₜ[S.k]
|
||||
(S.FDiscrete.map (Discrete.eqToHom hab')).hom (x b')) := by
|
||||
(S.FD.map (Discrete.eqToHom hab')).hom (x b')) := by
|
||||
subst ha hb
|
||||
rfl
|
||||
apply h'
|
||||
|
|
|
@ -93,8 +93,8 @@ lemma contrMap_swap : q.contrMap = q.swap.contrMap ≫ S.F.map q.contrSwapHom :=
|
|||
· apply congrArg
|
||||
erw [S.contr_tmul_symm]
|
||||
have h1' : ∀ {a a' b c b' c'} (haa' : a = a')
|
||||
(_ : b = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(_ : b = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(S.contr.app a).hom (b ⊗ₜ[S.k] c) = (S.contr.app a').hom (b' ⊗ₜ[S.k] c') := by
|
||||
intro a a' b c b' c' haa' hbc hcc
|
||||
subst haa'
|
||||
|
@ -103,14 +103,14 @@ lemma contrMap_swap : q.contrMap = q.swap.contrMap ≫ S.F.map q.contrSwapHom :=
|
|||
· simp only [Discrete.mk.injEq]
|
||||
exact Eq.symm (swapI_color q)
|
||||
· rfl
|
||||
· change _ = ((S.FDiscrete.map (Discrete.eqToHom _)) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom
|
||||
· change _ = ((S.FD.map (Discrete.eqToHom _)) ≫ S.FD.map (Discrete.eqToHom _)).hom
|
||||
(x (q.swap.i.succAbove q.swap.j))
|
||||
rw [← S.FDiscrete.map_comp]
|
||||
rw [← S.FD.map_comp]
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
eqToHom_trans]
|
||||
have h1nn' {a b d: Fin n.succ.succ} (hbd : b = d) (h : c d = S.τ (S.τ (c a))) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FDiscrete.map (eqToHom (by
|
||||
(S.FD.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FD.map (eqToHom (by
|
||||
subst hbd
|
||||
simp_all only [Nat.succ_eq_add_one, forall_true_left, Discrete.functor_obj_eq_as,
|
||||
Function.comp_apply, Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V,
|
||||
|
@ -127,7 +127,7 @@ lemma contrMap_swap : q.contrMap = q.swap.contrMap ≫ S.F.map q.contrSwapHom :=
|
|||
apply congrArg
|
||||
funext k
|
||||
have h1' {a b : Fin n.succ.succ} (h : a = b) :
|
||||
x b = (S.FDiscrete.map (Discrete.eqToIso (by rw [h])).hom).hom (x a) := by
|
||||
x b = (S.FD.map (Discrete.eqToIso (by rw [h])).hom).hom (x a) := by
|
||||
subst h
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, eqToIso_refl, Iso.refl_hom, Discrete.functor_map_id,
|
||||
Action.id_hom, ModuleCat.id_apply]
|
||||
|
|
|
@ -32,13 +32,13 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom.hom
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
≫ ((Discrete.pairτ S.FD S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))).hom := by
|
||||
have h1 : (S.F.map (extractTwoAux' i j σ)) ≫ (S.contrFin1Fin1 c1 i j h).hom
|
||||
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
|
||||
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(perm_contr_cond S h σ)).hom
|
||||
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
≫ ((Discrete.pairτ S.FD S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) := by
|
||||
erw [← CategoryTheory.Iso.eq_comp_inv]
|
||||
rw [CategoryTheory.Category.assoc]
|
||||
|
@ -51,7 +51,7 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, CategoryStruct.comp,
|
||||
extractOne_homToEquiv, Action.Hom.comp_hom, LinearMap.coe_comp]
|
||||
trans (S.F.map (extractTwoAux' i j σ)).hom (PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map
|
||||
(eqToHom (by
|
||||
simp only [Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
extractOne_homToEquiv, Fin.isValue, mk_hom, finExtractTwo_symm_inl_inr_apply,
|
||||
|
@ -72,10 +72,10 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
| Sum.inl 0 => rfl
|
||||
| Sum.inr 0 => rfl
|
||||
change _ = (S.contrFin1Fin1 c1 i j h).inv.hom
|
||||
((S.FDiscrete.map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i))).hom x ⊗ₜ[S.k]
|
||||
(S.FDiscrete.map (Discrete.eqToHom (congrArg S.τ (Hom.toEquiv_comp_inv_apply σ i)))).hom y)
|
||||
((S.FD.map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i))).hom x ⊗ₜ[S.k]
|
||||
(S.FD.map (Discrete.eqToHom (congrArg S.τ (Hom.toEquiv_comp_inv_apply σ i)))).hom y)
|
||||
rw [contrFin1Fin1_inv_tmul]
|
||||
change ((lift.obj S.FDiscrete).map (extractTwoAux' i j σ)).hom _ = _
|
||||
change ((lift.obj S.FD).map (extractTwoAux' i j σ)).hom _ = _
|
||||
rw [lift.map_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
|
@ -86,8 +86,8 @@ lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
extractOne_homToEquiv, lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom,
|
||||
Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, Discrete.functor_obj_eq_as,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y =
|
||||
((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
|
||||
change ((S.FD.map (eqToHom _)) ≫ S.FD.map (eqToHom _)).hom y =
|
||||
((S.FD.map (eqToHom _)) ≫ S.FD.map (eqToHom _)).hom y
|
||||
rw [← Functor.map_comp, ← Functor.map_comp]
|
||||
simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
|
||||
eqToHom_trans]
|
||||
|
@ -154,7 +154,7 @@ lemma contrIso_comm_aux_3 {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
|||
/-- A helper function used to proof the relation between perm and contr. -/
|
||||
def contrIsoComm {n : ℕ} {c c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :=
|
||||
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(((Discrete.pairτ S.FD S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) :
|
||||
(Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶
|
||||
(Discrete.mk (c1 i)))) ⊗ (S.F.map (extractTwo i j σ)))
|
||||
|
||||
|
|
|
@ -56,15 +56,15 @@ theorem prod_comm (t : TensorTree S c) (t2 : TensorTree S c2) :
|
|||
apply congrArg
|
||||
apply congrArg
|
||||
change _ = (β_ (S.F.obj (OverColor.mk c2)) (S.F.obj (OverColor.mk c))).hom.hom
|
||||
((inv (lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom).hom
|
||||
((lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom.hom (t2.tensor ⊗ₜ[S.k] t.tensor)))
|
||||
((inv (lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).hom).hom
|
||||
((lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).hom.hom (t2.tensor ⊗ₜ[S.k] t.tensor)))
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
lift.objObj'_V_carrier, instMonoidalCategoryStruct_tensorObj_left,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, IsIso.Iso.inv_hom]
|
||||
change _ = (β_ (S.F.obj (OverColor.mk c2)) (S.F.obj (OverColor.mk c))).hom.hom
|
||||
(((lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).hom ≫
|
||||
(lift.μ S.FDiscrete (OverColor.mk c2) (OverColor.mk c)).inv).hom ((t2.tensor ⊗ₜ[S.k] t.tensor)))
|
||||
(((lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).hom ≫
|
||||
(lift.μ S.FD (OverColor.mk c2) (OverColor.mk c)).inv).hom ((t2.tensor ⊗ₜ[S.k] t.tensor)))
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Iso.hom_inv_id, Action.id_hom,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, lift.objObj'_V_carrier, mk_hom,
|
||||
|
|
|
@ -146,14 +146,14 @@ lemma contrMap_prod_tprod_aux
|
|||
(h : Sum.elim c c1 l' = Sum.elim (c ∘ q.i.succAbove ∘ q.j.succAbove) c1 l)
|
||||
(h' : l' = (Sum.map (q.i.succAbove ∘ q.j.succAbove) id l))
|
||||
(p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i }))
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c).hom i }))
|
||||
(q' : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })) :
|
||||
(lift.discreteSumEquiv S.FDiscrete l)
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c1).hom i })) :
|
||||
(lift.discreteSumEquiv S.FD l)
|
||||
(HepLean.PiTensorProduct.elimPureTensor
|
||||
(fun k => p (q.i.succAbove (q.j.succAbove k))) q' l) =
|
||||
(S.FDiscrete.map (eqToHom (by simp [h]))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete l')
|
||||
(S.FD.map (eqToHom (by simp [h]))).hom
|
||||
((lift.discreteSumEquiv S.FD l')
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' l')) := by
|
||||
subst h'
|
||||
match l with
|
||||
|
@ -168,9 +168,9 @@ lemma contrMap_prod_tprod_aux
|
|||
rfl
|
||||
|
||||
lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i }))
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c).hom i }))
|
||||
(q' : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })) :
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c1).hom i })) :
|
||||
(S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)) (OverColor.mk c1)).hom
|
||||
((q.contrMap.hom (PiTensorProduct.tprod S.k p)) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))
|
||||
|
@ -185,25 +185,25 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
|||
conv_rhs => rw [lift.obj_μ_tprod_tmul]
|
||||
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
|
||||
conv_lhs => rw [lift.obj_μ_tprod_tmul]
|
||||
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
|
||||
change _ = ((lift.obj S.FD).map (mkIso _).hom).hom
|
||||
(q.leftContr.contrMap.hom
|
||||
(((lift.obj S.FDiscrete).map (equivToIso leftContrEquivSuccSucc).hom).hom
|
||||
(((lift.obj S.FDiscrete).map (equivToIso finSumFinEquiv).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso leftContrEquivSuccSucc).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso finSumFinEquiv).hom).hom
|
||||
((PiTensorProduct.tprod S.k) _))))
|
||||
conv_rhs => rw [lift.map_tprod]
|
||||
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
|
||||
change _ = ((lift.obj S.FD).map (mkIso _).hom).hom
|
||||
(q.leftContr.contrMap.hom
|
||||
(((lift.obj S.FDiscrete).map (equivToIso leftContrEquivSuccSucc).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso leftContrEquivSuccSucc).hom).hom
|
||||
(((PiTensorProduct.tprod S.k) _))))
|
||||
conv_rhs => rw [lift.map_tprod]
|
||||
change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom
|
||||
change _ = ((lift.obj S.FD).map (mkIso _).hom).hom
|
||||
(q.leftContr.contrMap.hom
|
||||
((PiTensorProduct.tprod S.k) _))
|
||||
conv_rhs => rw [contrMap, TensorSpecies.contrMap_tprod]
|
||||
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
|
||||
have hL (a : Fin n.succ.succ) {b : Fin (n + 1 + 1) ⊕ Fin n1}
|
||||
(h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete b)
|
||||
(h : b = Sum.inl a) : p a = (S.FD.map (Discrete.eqToHom (by rw [h]; simp))).hom
|
||||
((lift.discreteSumEquiv S.FD b)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
|
||||
subst h
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, instMonoidalCategoryStruct_tensorObj_hom,
|
||||
|
@ -220,8 +220,8 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
|||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||||
have h1' : ∀ {a a' b c b' c'} (haa' : a = a')
|
||||
(_ : b = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(_ : b = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(S.contr.app a).hom (b ⊗ₜ[S.k] c) = (S.contr.app a').hom (b' ⊗ₜ[S.k] c') := by
|
||||
intro a a' b c b' c' haa' hbc hcc
|
||||
subst haa'
|
||||
|
@ -236,15 +236,15 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
|||
exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl)
|
||||
· simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
|
||||
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
|
||||
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫
|
||||
S.FDiscrete.map (Discrete.eqToHom _)).hom _
|
||||
rw [← S.FDiscrete.map_comp]
|
||||
change _ = (S.FD.map (Discrete.eqToHom _) ≫
|
||||
S.FD.map (Discrete.eqToHom _)).hom _
|
||||
rw [← S.FD.map_comp]
|
||||
simp only [eqToHom_trans]
|
||||
have h1 {a d : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1}
|
||||
(h1' : b = Sum.inl a) (h2' : c a = S.τ (c d)) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom h2')).hom (p a) =
|
||||
(S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete b)
|
||||
(S.FD.map (Discrete.eqToHom h2')).hom (p a) =
|
||||
(S.FD.map (eqToHom (by subst h1'; simpa using h2'))).hom
|
||||
((lift.discreteSumEquiv S.FD b)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
|
||||
subst h1'
|
||||
rfl
|
||||
|
@ -401,9 +401,9 @@ lemma sum_inr_succAbove_rightContrI_rightContrJ (k : Fin n) : (@finSumFinEquiv n
|
|||
simp
|
||||
|
||||
lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i }))
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c1).hom i }))
|
||||
(q' : (i : (𝟭 Type).obj (OverColor.mk c).left) →
|
||||
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })) :
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk c).hom i })) :
|
||||
(S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ (OverColor.mk c1) (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove))).hom
|
||||
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (q.contrMap.hom (PiTensorProduct.tprod S.k q')))) =
|
||||
|
@ -431,8 +431,8 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
|||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||||
have h1' : ∀ {a a' b c b' c'} (haa' : a = a')
|
||||
(_ : b = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(_ : b = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom b')
|
||||
(_ : c = (S.FD.map (Discrete.eqToHom (by rw [haa']))).hom c'),
|
||||
(S.contr.app a).hom (b ⊗ₜ[S.k] c) = (S.contr.app a').hom (b' ⊗ₜ[S.k] c') := by
|
||||
intro a a' b c b' c' haa' hbc hcc
|
||||
subst haa'
|
||||
|
@ -444,8 +444,8 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
|||
simp only [Nat.add_eq, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, equivToIso_homToEquiv,
|
||||
LinearEquiv.coe_coe]
|
||||
have hL (a : Fin n.succ.succ) {b : Fin n1 ⊕ Fin n.succ.succ}
|
||||
(h : b = Sum.inr a) : q' a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete b)
|
||||
(h : b = Sum.inr a) : q' a = (S.FD.map (Discrete.eqToHom (by rw [h]; simp))).hom
|
||||
((lift.discreteSumEquiv S.FD b)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
|
||||
subst h
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, instMonoidalCategoryStruct_tensorObj_hom,
|
||||
|
@ -457,15 +457,15 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
|||
finSumFinEquiv_symm_apply_natAdd]
|
||||
· simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
|
||||
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
|
||||
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫
|
||||
S.FDiscrete.map (Discrete.eqToHom _)).hom _
|
||||
rw [← S.FDiscrete.map_comp]
|
||||
change _ = (S.FD.map (Discrete.eqToHom _) ≫
|
||||
S.FD.map (Discrete.eqToHom _)).hom _
|
||||
rw [← S.FD.map_comp]
|
||||
simp only [Nat.add_eq, eqToHom_trans]
|
||||
have h1 {a d : Fin n.succ.succ} {b : Fin n1 ⊕ Fin (n + 1 + 1) }
|
||||
(h1' : b = Sum.inr a) (h2' : c a = S.τ (c d)) :
|
||||
(S.FDiscrete.map (Discrete.eqToHom h2')).hom (q' a) =
|
||||
(S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete b)
|
||||
(S.FD.map (Discrete.eqToHom h2')).hom (q' a) =
|
||||
(S.FD.map (eqToHom (by subst h1'; simpa using h2'))).hom
|
||||
((lift.discreteSumEquiv S.FD b)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
|
||||
subst h1'
|
||||
rfl
|
||||
|
@ -489,11 +489,11 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
|
|||
(l' :Fin n1 ⊕ Fin n.succ.succ)
|
||||
(h : Sum.elim c1 c l' = Sum.elim c1 (c ∘ q.i.succAbove ∘ q.j.succAbove) l)
|
||||
(h' : l' = (Sum.map id (q.i.succAbove ∘ q.j.succAbove) l)) :
|
||||
(lift.discreteSumEquiv S.FDiscrete l)
|
||||
(lift.discreteSumEquiv S.FD l)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p
|
||||
(fun k => q' (q.i.succAbove (q.j.succAbove k))) l) =
|
||||
(S.FDiscrete.map (eqToHom (by simp [h]))).hom
|
||||
((lift.discreteSumEquiv S.FDiscrete l')
|
||||
(S.FD.map (eqToHom (by simp [h]))).hom
|
||||
((lift.discreteSumEquiv S.FD l')
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q' l')) := by
|
||||
subst h'
|
||||
match l with
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue