feat: def of graphical species
This commit is contained in:
parent
62a5dcd8e7
commit
5b181cc7dc
3 changed files with 205 additions and 17 deletions
86
HepLean/SpaceTime/LorentzTensor/Basic.lean
Normal file
86
HepLean/SpaceTime/LorentzTensor/Basic.lean
Normal file
|
@ -0,0 +1,86 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzTensor.GraphicalSpecies
|
||||
import HepLean.SpaceTime.LorentzVector.Basic
|
||||
/-!
|
||||
|
||||
# Lorentz Tensors
|
||||
|
||||
This file is currently a work-in-progress.
|
||||
|
||||
The aim is to define Lorentz tensors, and devlop a systematic way to manipulate them.
|
||||
|
||||
To manipulate them we will use the theory of modular operads
|
||||
(see e.g. [Raynor][raynor2021graphical]).
|
||||
|
||||
|
||||
-/
|
||||
|
||||
/-- A Lorentz Tensor defined by its coordinate map. -/
|
||||
def LorentzTensor (d : ℕ) (X : FintypeCat) : Type :=
|
||||
(X → Fin 1 ⊕ Fin d) → ℝ
|
||||
|
||||
/-- An instance of a additive commutative monoid on `LorentzTensor`. -/
|
||||
instance (d : ℕ) (X : FintypeCat) : AddCommMonoid (LorentzTensor d X) := Pi.addCommMonoid
|
||||
|
||||
/-- An instance of a module on `LorentzVector`. -/
|
||||
noncomputable instance (d : ℕ) (X : FintypeCat) : Module ℝ (LorentzTensor d X) := Pi.module _ _ _
|
||||
|
||||
namespace LorentzTensor
|
||||
open BigOperators
|
||||
open elGr
|
||||
open CategoryTheory
|
||||
|
||||
variable {d : ℕ} {X Y : FintypeCat}
|
||||
|
||||
/-- The map taking a list of `LorentzVector d` indexed by `X` to a ` LorentzTensor d X`. -/
|
||||
def tmul (t : X → LorentzVector d) : LorentzTensor d X :=
|
||||
fun f => ∏ x, (t x) (f x)
|
||||
|
||||
/- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism
|
||||
between `X` and `Y`. -/
|
||||
def indexEquivOfIndexHom (f : X ≅ Y) : (X → Fin 1 ⊕ Fin d) ≃ (Y → Fin 1 ⊕ Fin d) :=
|
||||
Equiv.piCongrLeft' _ (FintypeCat.equivEquivIso.symm f)
|
||||
|
||||
/-- Given an isomorphism of indexing sets, a linear equivalence on Lorentz tensors. -/
|
||||
noncomputable def mapOfIndexHom (f : X ≅ Y) : LorentzTensor d Y ≃ₗ[ℝ] LorentzTensor d X :=
|
||||
LinearEquiv.piCongrLeft' ℝ _ (indexEquivOfIndexHom f).symm
|
||||
|
||||
/-!
|
||||
|
||||
## Graphical species and Lorentz tensors
|
||||
|
||||
-/
|
||||
|
||||
/-- The graphical species defined by Lorentz tensors.
|
||||
|
||||
For this simple case, 𝓣 gets mapped to `PUnit`, if one wishes to include fermions etc,
|
||||
then `PUnit` will change to account for the colouring of edges. -/
|
||||
noncomputable def graphicalSpecies (d : ℕ) : GraphicalSpecies where
|
||||
obj x :=
|
||||
match x with
|
||||
| ⟨𝓣⟩ => PUnit
|
||||
| ⟨as f⟩ => LorentzTensor d f
|
||||
map {x y} f :=
|
||||
match x, y, f with
|
||||
| ⟨𝓣⟩, ⟨𝓣⟩, _ => 𝟙 PUnit
|
||||
| ⟨𝓣⟩, ⟨as x⟩, ⟨f⟩ => Empty.elim f
|
||||
| ⟨as f⟩, ⟨𝓣⟩, _ => fun _ => PUnit.unit
|
||||
| ⟨as f⟩, ⟨as g⟩, ⟨h⟩ => (mapOfIndexHom h).toEquiv.toFun
|
||||
map_id X := by
|
||||
match X with
|
||||
| ⟨𝓣⟩ => rfl
|
||||
| ⟨as f⟩ => rfl
|
||||
map_comp {x y z} f g := by
|
||||
match x, y, z, f, g with
|
||||
| ⟨𝓣⟩, ⟨𝓣⟩, ⟨𝓣⟩, _, _ => rfl
|
||||
| _, ⟨𝓣⟩, ⟨as _⟩, _, ⟨g⟩ => exact Empty.elim g
|
||||
| ⟨𝓣⟩, ⟨as _⟩, _, ⟨f⟩, _ => exact Empty.elim f
|
||||
| ⟨as x⟩, ⟨as y⟩, ⟨as z⟩, ⟨f⟩, ⟨g⟩ => rfl
|
||||
| ⟨as x⟩, ⟨𝓣⟩, ⟨𝓣⟩, _, _ => rfl
|
||||
| ⟨as x⟩, ⟨as y⟩, ⟨𝓣⟩, _, _ => rfl
|
||||
|
||||
end LorentzTensor
|
Loading…
Add table
Add a link
Reference in a new issue