feat: schur_triangulation
This commit is contained in:
parent
daa0f5f7ff
commit
5baa184092
1 changed files with 213 additions and 0 deletions
213
HepLean/Mathematics/SchurTriangulation.lean
Normal file
213
HepLean/Mathematics/SchurTriangulation.lean
Normal file
|
@ -0,0 +1,213 @@
|
|||
import Mathlib.LinearAlgebra.Eigenspace.Triangularizable
|
||||
import Mathlib.LinearAlgebra.Matrix.Spectrum
|
||||
open scoped InnerProductSpace
|
||||
|
||||
namespace Fin
|
||||
variable {i : Fin (m + n)}
|
||||
|
||||
def toSigmaBool_neg (h : ¬ i < m) : Fin n := ⟨i - m, Nat.sub_lt_left_of_lt_add (Nat.ge_of_not_lt h) i.isLt⟩
|
||||
def toSigmaBool (i : Fin (m + n)) : Σ b, cond b (Fin m) (Fin n) :=
|
||||
if h : i < m then ⟨true, i, h⟩ else ⟨false, toSigmaBool_neg h⟩
|
||||
theorem toSigmaBool_fst (h : i < m) : i.toSigmaBool = ⟨true, i, h⟩ := dif_pos h
|
||||
theorem toSigmaBool_snd (h : ¬ i < m) : i.toSigmaBool = ⟨false, toSigmaBool_neg h⟩ := dif_neg h
|
||||
|
||||
def ofSigmaBool : (Σ b, cond b (Fin m) (Fin n)) → Fin (m + n)
|
||||
| ⟨true, i⟩ => Fin.castAdd n i
|
||||
| ⟨false, i⟩ => Fin.natAdd m i
|
||||
|
||||
end Fin
|
||||
|
||||
def Equiv.finAddEquivSigmaBool : Fin (m + n) ≃ Σ b, cond b (Fin m) (Fin n) where
|
||||
toFun := Fin.toSigmaBool
|
||||
invFun := Fin.ofSigmaBool
|
||||
left_inv i :=
|
||||
if h : i < m
|
||||
then congrArg Fin.ofSigmaBool (dif_pos h)
|
||||
else
|
||||
calc Fin.ofSigmaBool i.toSigmaBool
|
||||
_ = ⟨m + (i - m), _⟩ := congrArg Fin.ofSigmaBool (dif_neg h)
|
||||
_ = i := Fin.ext <| Nat.add_sub_of_le (Nat.le_of_not_gt h)
|
||||
right_inv
|
||||
| ⟨true, i⟩ => dif_pos i.isLt
|
||||
| ⟨false, (i : Fin n)⟩ =>
|
||||
calc (Fin.natAdd m i).toSigmaBool
|
||||
_ = ⟨false, m + i - m, _⟩ := dif_neg <| Nat.not_lt_of_le (Nat.le_add_right ..)
|
||||
_ = ⟨false, i⟩ := Sigma.eq rfl <| Fin.ext (Nat.add_sub_cancel_left ..)
|
||||
|
||||
instance [M : Fintype m] [N : Fintype n] (b : Bool) : Fintype (cond b m n) := b.rec N M
|
||||
|
||||
instance [DecidableEq m] [DecidableEq n] : DecidableEq (Σ b, cond b m n)
|
||||
| ⟨true, _⟩, ⟨false, _⟩
|
||||
| ⟨false, _⟩, ⟨true, _⟩ => isFalse nofun
|
||||
| ⟨false, i⟩, ⟨false, j⟩
|
||||
| ⟨true, i⟩, ⟨true, j⟩ => if h : i = j then isTrue (Sigma.eq rfl h) else isFalse fun | rfl => h rfl
|
||||
|
||||
namespace Matrix
|
||||
|
||||
abbrev IsUpperTriangular [LT n] [CommRing R] (A : Matrix n n R) := A.BlockTriangular id
|
||||
abbrev UpperTriangular (n R) [LT n] [CommRing R] := { A : Matrix n n R // A.IsUpperTriangular }
|
||||
|
||||
end Matrix
|
||||
|
||||
namespace LinearMap
|
||||
variable [RCLike 𝕜]
|
||||
|
||||
section
|
||||
variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
|
||||
|
||||
section
|
||||
variable [FiniteDimensional 𝕜 E] [Fintype n] [DecidableEq n]
|
||||
|
||||
theorem toMatrixOrthonormal_apply_apply (b : OrthonormalBasis n 𝕜 E) (f : Module.End 𝕜 E) (i j : n)
|
||||
: toMatrixOrthonormal b f i j = ⟪b i, f (b j)⟫_𝕜 :=
|
||||
calc
|
||||
_ = b.repr (f (b j)) i := f.toMatrix_apply ..
|
||||
_ = ⟪b i, f (b j)⟫_𝕜 := b.repr_apply_apply ..
|
||||
|
||||
theorem toMatrixOrthonormal_reindex [Fintype m] [DecidableEq m]
|
||||
(b : OrthonormalBasis m 𝕜 E) (e : m ≃ n) (f : Module.End 𝕜 E)
|
||||
: toMatrixOrthonormal (b.reindex e) f = Matrix.reindex e e (toMatrixOrthonormal b f) :=
|
||||
Matrix.ext fun i j => let c := b.toBasis
|
||||
show toMatrix (b.reindex e).toBasis (b.reindex e).toBasis f i j = toMatrix c c f (e.symm i) (e.symm j) by
|
||||
rw [b.reindex_toBasis, f.toMatrix_apply, c.repr_reindex_apply, c.reindex_apply, f.toMatrix_apply]
|
||||
|
||||
end
|
||||
|
||||
structure SchurTriangulationAux (f : Module.End 𝕜 E) where
|
||||
dim : ℕ
|
||||
hdim : Module.finrank 𝕜 E = dim
|
||||
basis : OrthonormalBasis (Fin dim) 𝕜 E
|
||||
upperTriangular : (toMatrix basis.toBasis basis.toBasis f).IsUpperTriangular
|
||||
|
||||
end
|
||||
|
||||
variable [IsAlgClosed 𝕜]
|
||||
|
||||
protected noncomputable def SchurTriangulationAux.of
|
||||
[NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (f : Module.End 𝕜 E)
|
||||
: SchurTriangulationAux f :=
|
||||
haveI : Decidable (Nontrivial E) := Classical.propDecidable _
|
||||
if hE : Nontrivial E then
|
||||
let μ : f.Eigenvalues := default
|
||||
let V : Submodule 𝕜 E := f.eigenspace μ
|
||||
let W : Submodule 𝕜 E := Vᗮ
|
||||
let m := Module.finrank 𝕜 V
|
||||
have hdim : m + Module.finrank 𝕜 W = Module.finrank 𝕜 E := V.finrank_add_finrank_orthogonal
|
||||
let g : Module.End 𝕜 W := orthogonalProjection W ∘ₗ f.domRestrict W
|
||||
let ⟨n, hn, bW, hg⟩ := SchurTriangulationAux.of g
|
||||
|
||||
have bV : OrthonormalBasis (Fin m) 𝕜 V := stdOrthonormalBasis 𝕜 V
|
||||
have hV := V.orthogonalFamily_self
|
||||
have int : DirectSum.IsInternal (cond · V W) :=
|
||||
suffices ⨆ b, cond b V W = ⊤ from (hV.decomposition this).isInternal _
|
||||
(sup_eq_iSup V W).symm.trans Submodule.sup_orthogonal_of_completeSpace
|
||||
let B (b : Bool) : OrthonormalBasis (cond b (Fin m) (Fin n)) 𝕜 ↥(cond b V W) := b.rec bW bV
|
||||
let bE : OrthonormalBasis (Σ b, cond b (Fin m) (Fin n)) 𝕜 E := int.collectedOrthonormalBasis hV B
|
||||
let e := Equiv.finAddEquivSigmaBool.symm
|
||||
let basis := bE.reindex e
|
||||
{
|
||||
basis
|
||||
dim := m + n
|
||||
hdim := hn ▸ hdim.symm
|
||||
upperTriangular := fun i j (hji : j < i) => show toMatrixOrthonormal basis f i j = 0 from
|
||||
have hB : ∀ s, bE s = B s.1 s.2
|
||||
| ⟨true, i⟩ => show bE ⟨true, i⟩ = bV i from
|
||||
show (int.collectedBasis fun b => (B b).toBasis).toOrthonormalBasis _ ⟨true, i⟩ = bV i by simp
|
||||
| ⟨false, j⟩ => show bE ⟨false, j⟩ = bW j from
|
||||
show (int.collectedBasis fun b => (B b).toBasis).toOrthonormalBasis _ ⟨false, j⟩ = bW j by simp
|
||||
have hf {bi i' bj j'} (hi : i.toSigmaBool = ⟨bi, i'⟩) (hj : j.toSigmaBool = ⟨bj, j'⟩) :=
|
||||
calc toMatrixOrthonormal basis f i j
|
||||
_ = toMatrixOrthonormal bE f i.toSigmaBool j.toSigmaBool := by rw [f.toMatrixOrthonormal_reindex] ; rfl
|
||||
_ = ⟪bE i.toSigmaBool, f (bE j.toSigmaBool)⟫_𝕜 := f.toMatrixOrthonormal_apply_apply ..
|
||||
_ = ⟪(B bi i' : E), f (B bj j')⟫_𝕜 := by rw [hB, hB, hi, hj]
|
||||
|
||||
if hj : j < m then
|
||||
let j' : Fin m := ⟨j, hj⟩
|
||||
have hf' {bi i'} (hi : i.toSigmaBool = ⟨bi, i'⟩) (h0 : ⟪(B bi i' : E), bV j'⟫_𝕜 = 0) :=
|
||||
calc toMatrixOrthonormal basis f i j
|
||||
_ = ⟪(B bi i' : E), f _⟫_𝕜 := hf hi (Fin.toSigmaBool_fst hj)
|
||||
_ = ⟪_, f (bV j')⟫_𝕜 := rfl
|
||||
_ = 0 :=
|
||||
suffices f (bV j') = μ.val • bV j' by rw [this, inner_smul_right, h0, mul_zero]
|
||||
suffices f.HasEigenvector μ (bV j') from this.apply_eq_smul
|
||||
⟨(bV j').property, fun h => bV.toBasis.ne_zero j' (Subtype.ext h)⟩
|
||||
|
||||
if hi : i < m then
|
||||
let i' : Fin m := ⟨i, hi⟩
|
||||
suffices ⟪(bV i' : E), bV j'⟫_𝕜 = 0 from hf' (Fin.toSigmaBool_fst hi) this
|
||||
bV.orthonormal.right (Fin.ne_of_gt hji)
|
||||
else
|
||||
let i' : Fin n := Fin.toSigmaBool_neg hi
|
||||
suffices ⟪(bW i' : E), bV j'⟫_𝕜 = 0 from hf' (Fin.toSigmaBool_snd hi) this
|
||||
V.inner_left_of_mem_orthogonal (bV j').property (bW i').property
|
||||
else
|
||||
have hi (h : i < m) : False := hj (Nat.lt_trans hji h)
|
||||
let i' : Fin n := Fin.toSigmaBool_neg hi
|
||||
let j' : Fin n := Fin.toSigmaBool_neg hj
|
||||
calc toMatrixOrthonormal basis f i j
|
||||
_ = ⟪(bW i' : E), f (bW j')⟫_𝕜 := hf (Fin.toSigmaBool_snd hi) (Fin.toSigmaBool_snd hj)
|
||||
_ = ⟪bW i', g (bW j')⟫_𝕜 := by simp [g]
|
||||
_ = toMatrixOrthonormal bW g i' j' := (g.toMatrixOrthonormal_apply_apply ..).symm
|
||||
_ = 0 := hg (Nat.sub_lt_sub_right (Nat.le_of_not_lt hj) hji)
|
||||
}
|
||||
else
|
||||
haveI : Subsingleton E := not_nontrivial_iff_subsingleton.mp hE
|
||||
{
|
||||
dim := 0
|
||||
hdim := Module.finrank_zero_of_subsingleton
|
||||
basis := (Basis.empty E).toOrthonormalBasis ⟨nofun, nofun⟩
|
||||
upperTriangular := nofun
|
||||
}
|
||||
termination_by Module.finrank 𝕜 E
|
||||
decreasing_by exact
|
||||
calc Module.finrank 𝕜 W
|
||||
_ < m + Module.finrank 𝕜 W := Nat.lt_add_of_pos_left (Submodule.one_le_finrank_iff.mpr μ.property)
|
||||
_ = Module.finrank 𝕜 E := hdim
|
||||
|
||||
end LinearMap
|
||||
|
||||
namespace Matrix
|
||||
/- IMPORTANT: existing `DecidableEq n` should take precedence over `LinearOrder.decidableEq`,
|
||||
a.k.a., `instDecidableEq_mathlib`. -/
|
||||
variable [RCLike 𝕜] [IsAlgClosed 𝕜] [Fintype n] [DecidableEq n] [LinearOrder n] (A : Matrix n n 𝕜)
|
||||
|
||||
noncomputable def schurTriangulationAux : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) × UpperTriangular n 𝕜 :=
|
||||
let f := toEuclideanLin A
|
||||
let ⟨d, hd, b, hut⟩ := LinearMap.SchurTriangulationAux.of f
|
||||
let e : Fin d ≃o n := Fintype.orderIsoFinOfCardEq n (finrank_euclideanSpace.symm.trans hd)
|
||||
let b' := b.reindex e
|
||||
let B := LinearMap.toMatrixOrthonormal b' f
|
||||
suffices B.IsUpperTriangular from ⟨b', B, this⟩
|
||||
fun i j (hji : j < i) =>
|
||||
calc LinearMap.toMatrixOrthonormal b' f i j
|
||||
_ = LinearMap.toMatrixOrthonormal b f (e.symm i) (e.symm j) := by rw [f.toMatrixOrthonormal_reindex] ; rfl
|
||||
_ = 0 := hut (e.symm.lt_iff_lt.mpr hji)
|
||||
|
||||
noncomputable def schurTriangulationBasis : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) :=
|
||||
A.schurTriangulationAux.1
|
||||
|
||||
noncomputable def schurTriangulationUnitary : unitaryGroup n 𝕜 where
|
||||
val := (EuclideanSpace.basisFun n 𝕜).toBasis.toMatrix A.schurTriangulationBasis
|
||||
property := OrthonormalBasis.toMatrix_orthonormalBasis_mem_unitary ..
|
||||
|
||||
noncomputable def schurTriangulation : UpperTriangular n 𝕜 :=
|
||||
A.schurTriangulationAux.2
|
||||
|
||||
/-- **Schur triangulation**, **Schur decomposition** for matrices over an algebraically closed
|
||||
field. In particular, a complex matrix can be converted to upper-triangular form by a change of
|
||||
basis. In other words, any complex matrix is unitarily similar to an upper triangular matrix. -/
|
||||
theorem schur_triangulation
|
||||
: A = A.schurTriangulationUnitary * A.schurTriangulation * star A.schurTriangulationUnitary :=
|
||||
let U := A.schurTriangulationUnitary
|
||||
have h : U * A.schurTriangulation.val = A * U :=
|
||||
let b := A.schurTriangulationBasis.toBasis
|
||||
let c := (EuclideanSpace.basisFun n 𝕜).toBasis
|
||||
calc c.toMatrix b * LinearMap.toMatrix b b (toEuclideanLin A)
|
||||
_ = LinearMap.toMatrix c c (toEuclideanLin A) * c.toMatrix b := by simp
|
||||
_ = LinearMap.toMatrix c c (toLin c c A) * U := rfl
|
||||
_ = A * U := by simp
|
||||
calc A
|
||||
_ = A * U * star U := by simp [mul_assoc]
|
||||
_ = U * A.schurTriangulation * star U := by rw [←h]
|
||||
|
||||
end Matrix
|
Loading…
Add table
Add a link
Reference in a new issue