feat: Prove multiplication commute Lorentz action

This commit is contained in:
jstoobysmith 2024-07-17 13:53:36 -04:00
parent 757afbc60f
commit 5da7605301
5 changed files with 649 additions and 348 deletions

View file

@ -18,13 +18,9 @@ The Lorentz action is currently only defined for finite and decidable types `X`.
namespace RealLorentzTensor
variable {d : } {X Y : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
variable (T : RealLorentzTensor d X) (c : X → Colors)
variable (Λ Λ' : LorentzGroup d)
open LorentzGroup
open BigOperators
(T : RealLorentzTensor d X) (c : X → Colors) (Λ Λ' : LorentzGroup d) {μ : Colors}
variable {μ : Colors}
open LorentzGroup BigOperators Marked
/-- Monoid homomorphism from the Lorentz group to matrices indexed by `ColorsIndex d μ` for a
color `μ`.
@ -59,11 +55,35 @@ def colorMatrix (μ : Colors) : LorentzGroup d →* Matrix (ColorsIndex d μ) (C
lemma colorMatrix_cast {μ ν : Colors} (h : μ = ν) (Λ : LorentzGroup d) :
colorMatrix μ Λ =
Matrix.reindex (castColorsIndex h).symm (castColorsIndex h).symm (colorMatrix ν Λ) := by
Matrix.reindex (colorsIndexCast h).symm (colorsIndexCast h).symm (colorMatrix ν Λ) := by
subst h
rfl
/-- A real number occuring in the action of the Lorentz group on Lorentz tensors. -/
lemma colorMatrix_dual_cast {μ : Colors} (Λ : LorentzGroup d) :
colorMatrix (τ μ) Λ = Matrix.reindex (colorsIndexDualCastSelf) (colorsIndexDualCastSelf)
(colorMatrix μ (LorentzGroup.transpose Λ⁻¹)) := by
match μ with
| .up => rfl
| .down =>
ext i j
simp only [τ, colorMatrix, MonoidHom.coe_mk, OneHom.coe_mk, colorsIndexDualCastSelf, transpose,
lorentzGroupIsGroup_inv, Matrix.transpose_apply, minkowskiMetric.dual_transpose,
minkowskiMetric.dual_dual, Matrix.reindex_apply, Equiv.coe_fn_symm_mk, Matrix.submatrix_apply]
lemma colorMatrix_transpose {μ : Colors} (Λ : LorentzGroup d) :
colorMatrix μ (LorentzGroup.transpose Λ) = (colorMatrix μ Λ).transpose := by
match μ with
| .up => rfl
| .down =>
ext i j
simp only [colorMatrix, transpose, lorentzGroupIsGroup_inv, Matrix.transpose_apply,
MonoidHom.coe_mk, OneHom.coe_mk, minkowskiMetric.dual_transpose]
/-!
## Lorentz group to tensor representation matrices.
-/
@[simps!]
def toTensorRepMat {c : X → Colors} :
LorentzGroup d →* Matrix (IndexValue d c) (IndexValue d c) where
@ -108,27 +128,83 @@ lemma toTensorRepMat_mul' (i j : IndexValue d c) :
rfl
@[simp]
lemma toTensorRepMat_on_sum {cX : X → Colors} {cY : Y → Colors}
(i j : IndexValue d (sumElimIndexColor cX cY)) :
toTensorRepMat Λ i j = toTensorRepMat Λ (inlIndexValue i) (inlIndexValue j) *
toTensorRepMat Λ (inrIndexValue i) (inrIndexValue j) := by
lemma toTensorRepMat_of_indexValueSumEquiv {cX : X → Colors} {cY : Y → Colors}
(i j : IndexValue d (Sum.elim cX cY)) :
toTensorRepMat Λ i j = toTensorRepMat Λ (indexValueSumEquiv i).1 (indexValueSumEquiv j).1 *
toTensorRepMat Λ (indexValueSumEquiv i).2 (indexValueSumEquiv j).2 := by
simp only [toTensorRepMat_apply]
rw [Fintype.prod_sum_type]
rfl
open Marked
lemma toTensorRepMap_on_splitIndexValue (T : Marked d X n)
(i : T.UnmarkedIndexValue) (k : T.MarkedIndexValue) (j : IndexValue d T.color) :
toTensorRepMat Λ (splitIndexValue.symm (i, k)) j =
toTensorRepMat Λ i (toUnmarkedIndexValue j) *
toTensorRepMat Λ k (toMarkedIndexValue j) := by
lemma toTensorRepMat_of_indexValueSumEquiv' {cX : X → Colors} {cY : Y → Colors}
(i j : IndexValue d cX) (k l : IndexValue d cY) :
toTensorRepMat Λ i j * toTensorRepMat Λ k l =
toTensorRepMat Λ (indexValueSumEquiv.symm (i, k)) (indexValueSumEquiv.symm (j, l)) := by
simp only [toTensorRepMat_apply]
rw [Fintype.prod_sum_type]
rfl
/-!
## Tensor representation matrices and marked tensors.
-/
lemma toTensorRepMat_of_splitIndexValue' (T : Marked d X n)
(i j : T.UnmarkedIndexValue) (k l : T.MarkedIndexValue) :
toTensorRepMat Λ i j * toTensorRepMat Λ k l =
toTensorRepMat Λ (splitIndexValue.symm (i, k)) (splitIndexValue.symm (j, l)) := by
simp only [toTensorRepMat_apply]
rw [Fintype.prod_sum_type]
rfl
lemma toTensorRepMat_oneMarkedIndexValue_dual (T : Marked d X 1) (S : Marked d Y 1)
(h : T.markedColor 0 = τ (S.markedColor 0)) (x : ColorsIndex d (T.markedColor 0))
(k : S.MarkedIndexValue) :
toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k =
toTensorRepMat Λ⁻¹ (oneMarkedIndexValue
$ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm k)
(oneMarkedIndexValue x) := by
rw [toTensorRepMat_apply, toTensorRepMat_apply]
erw [Finset.prod_singleton, Finset.prod_singleton]
simp
rw [colorMatrix_cast h, colorMatrix_dual_cast]
rw [Matrix.reindex_apply, Matrix.reindex_apply]
simp
rw [colorMatrix_transpose]
simp
apply congrArg
simp only [Fin.isValue, oneMarkedIndexValue, colorsIndexDualCast, Equiv.coe_fn_symm_mk,
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.coe_fn_mk, Equiv.apply_symm_apply,
Equiv.symm_apply_apply]
lemma toTensorRepMap_sum_dual (T : Marked d X 1) (S : Marked d Y 1)
(h : T.markedColor 0 = τ (S.markedColor 0)) (j : T.MarkedIndexValue) (k : S.MarkedIndexValue) :
∑ x, toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k
* toTensorRepMat Λ (oneMarkedIndexValue x) j =
toTensorRepMat 1
(oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm k) j := by
trans ∑ x, toTensorRepMat Λ⁻¹ (oneMarkedIndexValue$ (colorsIndexDualCast h).symm $
oneMarkedIndexValue.symm k) (oneMarkedIndexValue x) * toTensorRepMat Λ (oneMarkedIndexValue x) j
apply Finset.sum_congr rfl (fun x _ => ?_)
rw [toTensorRepMat_oneMarkedIndexValue_dual]
rw [← Equiv.sum_comp oneMarkedIndexValue.symm]
change ∑ i, toTensorRepMat Λ⁻¹ (oneMarkedIndexValue $ (colorsIndexDualCast h).symm $
oneMarkedIndexValue.symm k) i * toTensorRepMat Λ i j = _
rw [← Matrix.mul_apply, ← toTensorRepMat.map_mul, inv_mul_self Λ]
lemma toTensorRepMat_one_coord_sum (T : Marked d X n) (i : T.UnmarkedIndexValue)
(k : T.MarkedIndexValue) : T.coord (splitIndexValue.symm (i, k)) = ∑ j, toTensorRepMat 1 k j *
T.coord (splitIndexValue.symm (i, j)) := by
erw [Finset.sum_eq_single_of_mem k]
simp only [IndexValue, map_one, Matrix.one_apply_eq, one_mul]
exact Finset.mem_univ k
intro j _ hjk
simp [hjk]
exact Or.inl (Matrix.one_apply_ne' hjk)
/-!
## Definition of the Lorentz group action on Real Lorentz Tensors.
-/
@ -139,16 +215,16 @@ instance lorentzAction : MulAction (LorentzGroup d) (RealLorentzTensor d X) wher
smul Λ T := {color := T.color,
coord := fun i => ∑ j, toTensorRepMat Λ i j * T.coord j}
one_smul T := by
refine ext' rfl ?_
refine ext rfl ?_
funext i
simp only [HSMul.hSMul, map_one]
erw [Finset.sum_eq_single_of_mem i]
simp only [Matrix.one_apply_eq, one_mul, IndexValue]
rfl
exact Finset.mem_univ i
exact fun j _ hij => mul_eq_zero.mpr (Or.inl (Matrix.one_apply_ne' hij))
exact fun j _ hij => mul_eq_zero.mpr (Or.inl (Matrix.one_apply_ne' hij))
mul_smul Λ Λ' T := by
refine ext' rfl ?_
refine ext rfl ?_
simp only [HSMul.hSMul]
funext i
have h1 : ∑ j : IndexValue d T.color, toTensorRepMat (Λ * Λ') i j
@ -168,53 +244,21 @@ instance lorentzAction : MulAction (LorentzGroup d) (RealLorentzTensor d X) wher
rw [Finset.prod_mul_distrib]
rfl
/-!
## The Lorentz action on marked tensors.
-/
@[simps!]
instance : MulAction (LorentzGroup d) (Marked d X n) := lorentzAction
lemma lorentzAction_on_splitIndexValue' (T : Marked d X n)
(i : T.UnmarkedIndexValue) (k : T.MarkedIndexValue) :
(Λ • T).coord (splitIndexValue.symm (i, k)) =
∑ (x : T.UnmarkedIndexValue), ∑ (y : T.MarkedIndexValue),
(toTensorRepMat Λ i x * toTensorRepMat Λ k y) * T.coord (splitIndexValue.symm (x, y)) := by
erw [lorentzAction_smul_coord]
erw [← Equiv.sum_comp splitIndexValue.symm]
rw [Fintype.sum_prod_type]
refine Finset.sum_congr rfl (fun x _ => ?_)
refine Finset.sum_congr rfl (fun y _ => ?_)
erw [toTensorRepMap_on_splitIndexValue]
lemma lorentzAction_smul_coord' {d : } {X : Type} [Fintype X] [DecidableEq X] (Λ : ↑(𝓛 d))
(T : RealLorentzTensor d X) (i : IndexValue d T.color) :
(Λ • T).coord i = ∑ j : IndexValue d T.color, toTensorRepMat Λ i j * T.coord j := by
rfl
@[simp]
lemma lorentzAction_on_splitIndexValue (T : Marked d X n)
(i : T.UnmarkedIndexValue) (k : T.MarkedIndexValue) :
(Λ • T).coord (splitIndexValue.symm (i, k)) =
∑ (x : T.UnmarkedIndexValue), toTensorRepMat Λ i x *
∑ (y : T.MarkedIndexValue), toTensorRepMat Λ k y *
T.coord (splitIndexValue.symm (x, y)) := by
rw [lorentzAction_on_splitIndexValue']
refine Finset.sum_congr rfl (fun x _ => ?_)
rw [Finset.mul_sum]
refine Finset.sum_congr rfl (fun y _ => ?_)
rw [NonUnitalRing.mul_assoc]
/-!
## Properties of the Lorentz action.
-/
/-- The action on an empty Lorentz tensor is trivial. -/
lemma lorentzAction_on_isEmpty [IsEmpty X] (Λ : LorentzGroup d) (T : RealLorentzTensor d X) :
Λ • T = T := by
refine ext' rfl ?_
refine ext rfl ?_
funext i
erw [lorentzAction_smul_coord]
simp only [Finset.univ_unique, Finset.univ_eq_empty, Finset.prod_empty, one_mul,
@ -224,58 +268,183 @@ lemma lorentzAction_on_isEmpty [IsEmpty X] (Λ : LorentzGroup d) (T : RealLorent
rw [@mul_left_eq_self₀]
exact Or.inl rfl
/-- The Lorentz action commutes with `congrSet`. -/
lemma lorentzAction_comm_congrSet (f : X ≃ Y) (Λ : LorentzGroup d) (T : RealLorentzTensor d X) :
congrSet f (Λ • T) = Λ • (congrSet f T) := by
refine ext' rfl ?_
/-- The Lorentz action commutes with `mapIso`. -/
lemma lorentzAction_mapIso (f : X ≃ Y) (Λ : LorentzGroup d) (T : RealLorentzTensor d X) :
mapIso d f (Λ • T) = Λ • (mapIso d f T) := by
refine ext rfl ?_
funext i
erw [lorentzAction_smul_coord, lorentzAction_smul_coord]
erw [← Equiv.sum_comp (congrSetIndexValue d f T.color)]
rw [mapIso_apply_coord]
rw [lorentzAction_smul_coord', lorentzAction_smul_coord']
let is : IndexValue d T.color ≃ IndexValue d ((mapIso d f) T).color :=
indexValueIso d f (by funext x ; simp)
rw [← Equiv.sum_comp is]
refine Finset.sum_congr rfl (fun j _ => ?_)
simp [toTensorRepMat]
erw [← Equiv.prod_comp f]
apply Or.inl
congr
funext x
have h1 : (T.color (f.symm (f x))) = T.color x := by
simp only [Equiv.symm_apply_apply]
rw [colorMatrix_cast h1]
simp only [Matrix.reindex_apply, Equiv.symm_symm, Matrix.submatrix_apply]
erw [castColorsIndex_comp_congrSetIndexValue]
apply congrFun
apply congrArg
symm
refine cast_eq_iff_heq.mpr ?_
simp only [congrSetIndexValue, Equiv.piCongrLeft'_symm_apply, heq_eqRec_iff_heq, heq_eq_eq]
rw [mapIso_apply_coord]
refine Mathlib.Tactic.Ring.mul_congr ?_ ?_ rfl
· simp only [IndexValue, toTensorRepMat, MonoidHom.coe_mk, OneHom.coe_mk, mapIso_apply_color,
indexValueIso_refl]
rw [← Equiv.prod_comp f]
apply Finset.prod_congr rfl (fun x _ => ?_)
have h1 : (T.color (f.symm (f x))) = T.color x := by
simp only [Equiv.symm_apply_apply]
rw [colorMatrix_cast h1]
apply congrArg
simp only [is]
erw [indexValueIso_eq_symm, indexValueIso_symm_apply']
simp only [colorsIndexCast, Function.comp_apply, mapIso_apply_color, Equiv.cast_refl,
Equiv.refl_symm, Equiv.refl_apply, Equiv.cast_apply]
symm
refine cast_eq_iff_heq.mpr ?_
congr
exact Equiv.symm_apply_apply f x
· apply congrArg
funext a
simp only [IndexValue, mapIso_apply_color, Equiv.symm_apply_apply, is]
/-!
## The Lorentz action on marked tensors.
-/
@[simps!]
instance : MulAction (LorentzGroup d) (Marked d X n) := lorentzAction
/-- Action of the Lorentz group on just marked indices. -/
@[simps!]
def markedLorentzAction : MulAction (LorentzGroup d) (Marked d X n) where
smul Λ T := {
color := T.color,
coord := fun i => ∑ j, toTensorRepMat Λ (splitIndexValue i).2 j *
T.coord (splitIndexValue.symm ((splitIndexValue i).1, j))}
one_smul T := by
refine ext rfl ?_
funext i
simp only [HSMul.hSMul, map_one]
erw [Finset.sum_eq_single_of_mem (splitIndexValue i).2]
erw [Matrix.one_apply_eq (splitIndexValue i).2]
simp only [IndexValue, one_mul, indexValueIso_refl, Equiv.refl_apply]
apply congrArg
exact Equiv.symm_apply_apply splitIndexValue i
exact Finset.mem_univ (splitIndexValue i).2
exact fun j _ hij => mul_eq_zero.mpr (Or.inl (Matrix.one_apply_ne' hij))
mul_smul Λ Λ' T := by
refine ext rfl ?_
simp only [HSMul.hSMul]
funext i
have h1 : ∑ (j : T.MarkedIndexValue), toTensorRepMat (Λ * Λ') (splitIndexValue i).2 j
* T.coord (splitIndexValue.symm ((splitIndexValue i).1, j)) =
∑ (j : T.MarkedIndexValue), ∑ (k : T.MarkedIndexValue),
(∏ x, ((colorMatrix (T.markedColor x) Λ ((splitIndexValue i).2 x) (k x)) *
(colorMatrix (T.markedColor x) Λ' (k x) (j x)))) *
T.coord (splitIndexValue.symm ((splitIndexValue i).1, j)) := by
refine Finset.sum_congr rfl (fun j _ => ?_)
rw [toTensorRepMat_mul', Finset.sum_mul]
rfl
erw [h1]
rw [Finset.sum_comm]
refine Finset.sum_congr rfl (fun j _ => ?_)
rw [Finset.mul_sum]
refine Finset.sum_congr rfl (fun k _ => ?_)
simp only [toTensorRepMat, IndexValue]
rw [← mul_assoc]
congr
rw [Finset.prod_mul_distrib]
rfl
/-- Action of the Lorentz group on just unmarked indices. -/
@[simps!]
def unmarkedLorentzAction : MulAction (LorentzGroup d) (Marked d X n) where
smul Λ T := {
color := T.color,
coord := fun i => ∑ j, toTensorRepMat Λ (splitIndexValue i).1 j *
T.coord (splitIndexValue.symm (j, (splitIndexValue i).2))}
one_smul T := by
refine ext rfl ?_
funext i
simp only [HSMul.hSMul, map_one]
erw [Finset.sum_eq_single_of_mem (splitIndexValue i).1]
erw [Matrix.one_apply_eq (splitIndexValue i).1]
simp only [IndexValue, one_mul, indexValueIso_refl, Equiv.refl_apply]
apply congrArg
exact Equiv.symm_apply_apply splitIndexValue i
exact Finset.mem_univ (splitIndexValue i).1
exact fun j _ hij => mul_eq_zero.mpr (Or.inl (Matrix.one_apply_ne' hij))
mul_smul Λ Λ' T := by
refine ext rfl ?_
simp only [HSMul.hSMul]
funext i
have h1 : ∑ (j : T.UnmarkedIndexValue), toTensorRepMat (Λ * Λ') (splitIndexValue i).1 j
* T.coord (splitIndexValue.symm (j, (splitIndexValue i).2)) =
∑ (j : T.UnmarkedIndexValue), ∑ (k : T.UnmarkedIndexValue),
(∏ x, ((colorMatrix (T.unmarkedColor x) Λ ((splitIndexValue i).1 x) (k x)) *
(colorMatrix (T.unmarkedColor x) Λ' (k x) (j x)))) *
T.coord (splitIndexValue.symm (j, (splitIndexValue i).2)) := by
refine Finset.sum_congr rfl (fun j _ => ?_)
rw [toTensorRepMat_mul', Finset.sum_mul]
rfl
erw [h1]
rw [Finset.sum_comm]
refine Finset.sum_congr rfl (fun j _ => ?_)
rw [Finset.mul_sum]
refine Finset.sum_congr rfl (fun k _ => ?_)
simp only [toTensorRepMat, IndexValue]
rw [← mul_assoc]
congr
rw [Finset.prod_mul_distrib]
rfl
scoped[RealLorentzTensor] infixr:73 " •ₘ " => markedLorentzAction.smul
scoped[RealLorentzTensor] infixr:73 " •ᵤₘ " => unmarkedLorentzAction.smul
/-- Acting on unmarked and then marked indices is equivalent to acting on all indices. -/
lemma marked_unmarked_action_eq_action (T : Marked d X n) : Λ •ₘ (Λ •ᵤₘ T) = Λ • T := by
refine ext rfl ?_
funext i
change ∑ j, toTensorRepMat Λ (splitIndexValue i).2 j *
(∑ k, toTensorRepMat Λ (splitIndexValue i).1 k * T.coord (splitIndexValue.symm (k, j))) = _
trans ∑ j, ∑ k, (toTensorRepMat Λ (splitIndexValue i).2 j *
toTensorRepMat Λ (splitIndexValue i).1 k) * T.coord (splitIndexValue.symm (k, j))
apply Finset.sum_congr rfl (fun j _ => ?_)
rw [Finset.mul_sum]
apply Finset.sum_congr rfl (fun k _ => ?_)
exact Eq.symm (mul_assoc _ _ _)
trans ∑ j, ∑ k, (toTensorRepMat Λ i (splitIndexValue.symm (k, j))
* T.coord (splitIndexValue.symm (k, j)))
apply Finset.sum_congr rfl (fun j _ => (Finset.sum_congr rfl (fun k _ => ?_)))
rw [mul_comm (toTensorRepMat _ _ _), toTensorRepMat_of_splitIndexValue']
simp only [IndexValue, Finset.mem_univ, Prod.mk.eta, Equiv.symm_apply_apply]
trans ∑ p, (toTensorRepMat Λ i p * T.coord p)
rw [← Equiv.sum_comp splitIndexValue.symm, Fintype.sum_prod_type, Finset.sum_comm]
rfl
rfl
open Marked
lemma lorentzAction_comm_mul (T : Marked d X 1) (S : Marked d Y 1)
(h : T.markedColor 0 = τ (S.markedColor 1)) :
mul (Λ • T) (Λ • S) h = Λ • mul T S h := by
refine ext' rfl ?_
/-- Acting on marked and then unmarked indices is equivalent to acting on all indices. -/
lemma unmarked_marked_action_eq_action (T : Marked d X n) : Λ •ᵤₘ (Λ •ₘ T) = Λ • T := by
refine ext rfl ?_
funext i
trans ∑ j, toTensorRepMat Λ (inlIndexValue i) (inlIndexValue j) *
toTensorRepMat Λ (inrIndexValue i) (inrIndexValue j)
* (mul T S h).coord j
swap
refine Finset.sum_congr rfl (fun j _ => ?_)
erw [toTensorRepMat_on_sum]
change ∑ j, toTensorRepMat Λ (splitIndexValue i).1 j *
(∑ k, toTensorRepMat Λ (splitIndexValue i).2 k * T.coord (splitIndexValue.symm (j, k))) = _
trans ∑ j, ∑ k, (toTensorRepMat Λ (splitIndexValue i).1 j *
toTensorRepMat Λ (splitIndexValue i).2 k) * T.coord (splitIndexValue.symm (j, k))
apply Finset.sum_congr rfl (fun j _ => ?_)
rw [Finset.mul_sum]
apply Finset.sum_congr rfl (fun k _ => ?_)
exact Eq.symm (mul_assoc _ _ _)
trans ∑ j, ∑ k, (toTensorRepMat Λ i (splitIndexValue.symm (j, k))
* T.coord (splitIndexValue.symm (j, k)))
apply Finset.sum_congr rfl (fun j _ => (Finset.sum_congr rfl (fun k _ => ?_)))
rw [toTensorRepMat_of_splitIndexValue']
simp only [IndexValue, Finset.mem_univ, Prod.mk.eta, Equiv.symm_apply_apply]
trans ∑ p, (toTensorRepMat Λ i p * T.coord p)
rw [← Equiv.sum_comp splitIndexValue.symm, Fintype.sum_prod_type]
rfl
rfl
change ∑ x, (∑ j, toTensorRepMat Λ (splitIndexValue.symm
(inlIndexValue i, T.oneMarkedIndexValue x)) j * T.coord j) *
(∑ k, toTensorRepMat Λ _ k * S.coord k) = _
trans ∑ x, (∑ j,
toTensorRepMat Λ (inlIndexValue i) (toUnmarkedIndexValue j)
* toTensorRepMat Λ (T.oneMarkedIndexValue x) (toMarkedIndexValue j)
* T.coord j) *
sorry
/-- The marked and unmarked actions commute. -/
lemma marked_unmarked_action_comm (T : Marked d X n) : Λ •ᵤₘ (Λ •ₘ T) = Λ •ₘ (Λ •ᵤₘ T) := by
rw [unmarked_marked_action_eq_action, marked_unmarked_action_eq_action]
/-! TODO: Show that the Lorentz action commutes with multiplication. -/
/-! TODO: Show that the Lorentz action commutes with contraction. -/
/-! TODO: Show that the Lorentz action commutes with rising and lowering indices. -/
end RealLorentzTensor