feat: Partial fromDualRep_tensor
This commit is contained in:
parent
2c26584cfc
commit
5fc5946530
5 changed files with 65 additions and 10 deletions
|
@ -538,6 +538,24 @@ lemma evalMap_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin
|
|||
LinearMap.id_coe, id_eq, TensorProduct.lid_tmul]
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## The equivalence turning vecs into tensors
|
||||
|
||||
-/
|
||||
|
||||
/-- The equivaelcne between tensors based on `![c]` and vectros in ` S.FD.obj (Discrete.mk c)`. -/
|
||||
def tensorToVec (c : S.C) : S.F.obj (OverColor.mk ![c]) ≅ S.FD.obj (Discrete.mk c) :=
|
||||
OverColor.forgetLiftAppCon S.FD c
|
||||
|
||||
lemma tensorToVec_inv_apply_expand (c : S.C) (x : S.FD.obj (Discrete.mk c)) :
|
||||
(S.tensorToVec c).inv.hom x =
|
||||
((lift.obj S.FD).map (OverColor.mkIso (by
|
||||
funext i
|
||||
fin_cases i
|
||||
rfl)).hom).hom ((OverColor.forgetLiftApp S.FD c).inv.hom x) :=
|
||||
forgetLiftAppCon_inv_apply_expand S.FD c x
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
||||
|
|
|
@ -29,11 +29,11 @@ variable {S : TensorSpecies}
|
|||
def contrOneTwoLeft {c1 c2 : S.C}
|
||||
(x : S.F.obj (OverColor.mk ![c1])) (y : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
|
||||
S.F.obj (OverColor.mk ![c2]) :=
|
||||
(OverColor.forgetLiftAppCon S.FD c2).inv.hom <|
|
||||
(S.tensorToVec c2).inv.hom <|
|
||||
(λ_ (S.FD.obj (Discrete.mk c2))).hom.hom <|
|
||||
((S.contr.app (Discrete.mk c1)) ▷ (S.FD.obj (Discrete.mk (c2 )))).hom <|
|
||||
(α_ _ _ (S.FD.obj (Discrete.mk (c2 )))).inv.hom <|
|
||||
(OverColor.forgetLiftAppCon S.FD c1).hom.hom (x) ⊗ₜ
|
||||
(S.tensorToVec c1).hom.hom (x) ⊗ₜ
|
||||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y
|
||||
|
||||
@[simp]
|
||||
|
@ -70,12 +70,12 @@ lemma contrOneTwoLeft_tprod_eq {c1 c2 : S.C}
|
|||
(fy : (i : (𝟭 Type).obj (OverColor.mk ![S.τ c1, c2]).left)
|
||||
→ CoeSort.coe (S.FD.obj { as := (OverColor.mk ![S.τ c1, c2]).hom i })) :
|
||||
contrOneTwoLeft (PiTensorProduct.tprod S.k fx) (PiTensorProduct.tprod S.k fy) =
|
||||
((OverColor.forgetLiftAppCon S.FD c2).inv.hom (
|
||||
((S.tensorToVec c2).inv.hom (
|
||||
((S.contr.app (Discrete.mk c1)).hom (fx (0 : Fin 1) ⊗ₜ fy (0 : Fin 2)) •
|
||||
fy (1 : Fin 2)))) := by
|
||||
rw [contrOneTwoLeft]
|
||||
apply congrArg
|
||||
rw [Discrete.pairIsoSep_inv_tprod S.FD fy, OverColor.forgetLiftAppCon]
|
||||
rw [Discrete.pairIsoSep_inv_tprod S.FD fy, tensorToVec, OverColor.forgetLiftAppCon]
|
||||
change (S.contr.app { as := c1 }).hom (_ ⊗ₜ[S.k] fy (0 : Fin 2)) • fy (1 : Fin 2) = _
|
||||
congr
|
||||
simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
|
@ -106,7 +106,7 @@ lemma contr_one_two_left_eq_contrOneTwoLeft_tprod {c1 c2 : S.C} (x : S.F.obj (Ov
|
|||
subst hy
|
||||
conv_rhs =>
|
||||
rw [contrOneTwoLeft_tprod_eq]
|
||||
rw [OverColor.forgetLiftAppCon_inv_apply_expand]
|
||||
rw [tensorToVec_inv_apply_expand]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, mk_left,
|
||||
Functor.id_obj, mk_hom, contr_tensor, prod_tensor, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
|
@ -184,6 +184,17 @@ lemma contr_one_two_left_eq_contrOneTwoLeft {c1 c2 : S.C} (x : S.F.obj (OverColo
|
|||
simpa using contr_one_two_left_eq_contrOneTwoLeft_tprod (PiTensorProduct.tprod S.k fx)
|
||||
(PiTensorProduct.tprod S.k fy) fx fy
|
||||
|
||||
/-- Expanding `contrOneTwoLeft` as a tensor tree. -/
|
||||
lemma contrOneTwoLeft_tensorTree {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
|
||||
(y : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
|
||||
(contrOneTwoLeft x y) = ({x | μ ⊗ y | μ ν}ᵀ |>
|
||||
perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl ))).tensor := by
|
||||
change (tensorNode (contrOneTwoLeft x y)).tensor = _
|
||||
symm
|
||||
rw [perm_eq_iff_eq_perm]
|
||||
rw [contr_one_two_left_eq_contrOneTwoLeft]
|
||||
rfl
|
||||
|
||||
/-- Expands the inner contraction of two 2-tensors which are
|
||||
tprods in terms of basic categorical
|
||||
constructions and fields of the tensor species. -/
|
||||
|
|
|
@ -18,6 +18,7 @@ open MonoidalCategory
|
|||
noncomputable section
|
||||
|
||||
namespace TensorSpecies
|
||||
open TensorTree
|
||||
variable (S : TensorSpecies)
|
||||
|
||||
/-- The morphism from `S.FD.obj (Discrete.mk c)` to `S.FD.obj (Discrete.mk (S.τ c))`
|
||||
|
@ -43,8 +44,8 @@ def fromDualRep (c : S.C) : S.FD.obj (Discrete.mk (S.τ c)) ⟶ S.FD.obj (Discre
|
|||
|
||||
/-- The rewriting of `toDualRep` in terms of `contrOneTwoLeft`. -/
|
||||
lemma toDualRep_apply_eq_contrOneTwoLeft (c : S.C) (x : S.FD.obj (Discrete.mk c)) :
|
||||
(S.toDualRep c).hom x = (OverColor.forgetLiftAppCon S.FD (S.τ c)).hom.hom
|
||||
(contrOneTwoLeft (((OverColor.forgetLiftAppCon S.FD c).inv.hom x))
|
||||
(S.toDualRep c).hom x = (S.tensorToVec (S.τ c)).hom.hom
|
||||
(contrOneTwoLeft (((S.tensorToVec c).inv.hom x))
|
||||
(S.metricTensor (S.τ c))) := by
|
||||
simp only [toDualRep, Monoidal.tensorUnit_obj, Action.comp_hom,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
|
@ -59,6 +60,29 @@ lemma toDualRep_apply_eq_contrOneTwoLeft (c : S.C) (x : S.FD.obj (Discrete.mk c)
|
|||
erw [pairIsoSep_inv_metricTensor]
|
||||
rfl
|
||||
|
||||
/-- Expansion of `toDualRep` is
|
||||
`(S.tensorToVec c).inv.hom x | μ ⊗ S.metricTensor (S.τ c) | μ ν`. -/
|
||||
lemma toDualRep_tensorTree (c : S.C) (x : S.FD.obj (Discrete.mk c)) :
|
||||
let y : S.F.obj (OverColor.mk ![c]) := (S.tensorToVec c).inv.hom x
|
||||
(S.toDualRep c).hom x = (S.tensorToVec (S.τ c)).hom.hom
|
||||
({y | μ ⊗ S.metricTensor (S.τ c) | μ ν}ᵀ
|
||||
|> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl ))).tensor := by
|
||||
simp only
|
||||
rw [toDualRep_apply_eq_contrOneTwoLeft]
|
||||
apply congrArg
|
||||
exact contrOneTwoLeft_tensorTree ((S.tensorToVec c).inv.hom x) (S.metricTensor (S.τ c))
|
||||
|
||||
lemma fromDualRep_tensorTree (c : S.C) (x : S.FD.obj (Discrete.mk (S.τ c))) :
|
||||
let y : S.F.obj (OverColor.mk ![S.τ c]) := (S.tensorToVec (S.τ c)).inv.hom x
|
||||
(S.fromDualRep c).hom x = (S.tensorToVec c).hom.hom
|
||||
({y | μ ⊗ S.metricTensor (S.τ (S.τ c))| μ ν}ᵀ
|
||||
|> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; exact (S.τ_involution c).symm ))).tensor := by
|
||||
simp only
|
||||
rw [fromDualRep]
|
||||
simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply, Nat.succ_eq_add_one,
|
||||
Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero]
|
||||
rw [toDualRep_tensorTree]
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
||||
|
|
|
@ -121,7 +121,7 @@ lemma contrOneTwoLeft_unitTensor {c1 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
|
|||
Action.instMonoidalCategory_whiskerRight_hom, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
Function.comp_apply, Action.instMonoidalCategory_associator_inv_hom, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
forgetLiftAppCon_inv_apply_expand]
|
||||
tensorToVec_inv_apply_expand]
|
||||
erw [pairIsoSep_inv_unitTensor (S := S) (c := c1)]
|
||||
change (S.F.mapIso (mkIso _)).hom.hom _ = _
|
||||
rw [Discrete.rep_iso_apply_iff, Discrete.rep_iso_inv_apply_iff]
|
||||
|
|
|
@ -195,8 +195,10 @@ def getNoIndicesExact (stx : Syntax) : TermElabM ℕ := do
|
|||
let a' ← whnf a
|
||||
match a' with
|
||||
| Expr.lit (Literal.natVal n) => return n
|
||||
|_ => throwError "Could not extract number of indices from tensor (getNoIndicesExact). "
|
||||
| _ => throwError "Could not extract number of indices from tensor (getNoIndicesExact). "
|
||||
|_ => throwError s!"Could not extract number of indices from tensor
|
||||
{stx} (getNoIndicesExact). "
|
||||
| _ => throwError s!"Could not extract number of indices from tensor
|
||||
{stx} (getNoIndicesExact). "
|
||||
| _ => return 1
|
||||
| k => return k
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue