diff --git a/HepLean/PerturbationTheory/FieldOpFreeAlgebra/Basic.lean b/HepLean/PerturbationTheory/FieldOpFreeAlgebra/Basic.lean index 46d8851..30d6f70 100644 --- a/HepLean/PerturbationTheory/FieldOpFreeAlgebra/Basic.lean +++ b/HepLean/PerturbationTheory/FieldOpFreeAlgebra/Basic.lean @@ -35,7 +35,7 @@ namespace FieldSpecification variable {𝓕 : FieldSpecification} /-- For a field specification `𝓕`, the algebra `𝓕.FieldOpFreeAlgebra` is - the algebra is generated by creation and annihilation parts of field operators defined in + the algebra generated by creation and annihilation parts of field operators defined in `𝓕.CrAnFieldOp`. It represents the algebra containing all possible products and linear combinations of creation and annihilation parts of field operators, without imposing any conditions. diff --git a/scripts/MetaPrograms/notes.lean b/scripts/MetaPrograms/notes.lean index a3b6471..2792bfa 100644 --- a/scripts/MetaPrograms/notes.lean +++ b/scripts/MetaPrograms/notes.lean @@ -147,34 +147,43 @@ def perturbationTheory : Note where .name `FieldSpecification.CrAnFieldOp, .h2 "Field-operator free algebra", .name `FieldSpecification.FieldOpFreeAlgebra, + .name `FieldSpecification.FieldOpFreeAlgebra.superCommuteF, .h2 "Field-operator algebra", .name `FieldSpecification.FieldOpAlgebra, + .name `FieldSpecification.FieldOpAlgebra.superCommute, .h1 "Time ordering", - .name `FieldSpecification.timeOrderRel, - .name `FieldSpecification.timeOrderSign, + .name `FieldSpecification.crAnTimeOrderRel, + .name `FieldSpecification.crAnTimeOrderSign, + .name `FieldSpecification.FieldOpFreeAlgebra.timeOrderF, + .name `FieldSpecification.FieldOpAlgebra.timeOrder, .h1 "Normal ordering", + .name `FieldSpecification.normalOrderRel, + .name `FieldSpecification.normalOrderSign, + .name `FieldSpecification.FieldOpFreeAlgebra.normalOrderF, + .name `FieldSpecification.FieldOpAlgebra.normalOrder, .h1 "Wick Contractions", .h2 "Definition", + .name `WickContraction, + .name `WickContraction.GradingCompliant, .h2 "Constructors", .p "There are a number of ways to construct a Wick contraction from other Wick contractions or single contractions.", + .name `WickContraction.insertAndContract, + .name `WickContraction.erase, + .name `WickContraction.join, .h2 "Sign", - .h1 "Static Wick's theorem", - .h1 "Time-dependent Wick's theorem", - .h2 "Wick terms", - .name `FieldSpecification.wick_term_terminology, - .name `FieldSpecification.wick_term_none_eq_wick_term_cons, - .name `FieldSpecification.wick_term_some_eq_wick_term_optionEraseZ, - .name `FieldSpecification.wick_term_cons_eq_sum_wick_term, - .h2 "The case of the nil list", - .p "Our proof of Wick's theorem will be via induction on the number of fields that - are in the time-ordered product. The base case is when there are no fields. - The proof of Wick's theorem follows from definitions and simple lemmas.", - .name `FieldSpecification.wicks_theorem_nil, - .h2 "Wick's theorems", + .name `WickContraction.sign, + .name `WickContraction.signInsertNone_eq_filterset, + .name `WickContraction.signInsertSome_mul_filter_contracted_of_not_lt, + .name `WickContraction.join_sign, + .h2 "Cardinality", + .name `WickContraction.card_eq_cardFun, + .h1 "Time and static contractions", + .h1 "The three Wick's theorems", .name `FieldSpecification.wicks_theorem, - .h1 "Wick's theorem with normal ordering"] - + .name `FieldSpecification.FieldOpAlgebra.static_wick_theorem, + .name `FieldSpecification.FieldOpAlgebra.wicks_theorem_normal_order + ] unsafe def main (_ : List String) : IO UInt32 := do initSearchPath (← findSysroot)