refactor: Style Lint

This commit is contained in:
jstoobysmith 2024-12-19 12:59:14 +00:00
parent aad3afd3a7
commit 63c4cabdf4
9 changed files with 512 additions and 453 deletions

View file

@ -244,7 +244,7 @@ lemma finExtractOne_apply_neq {n : } (i j : Fin n.succ.succ) (hij : i ≠ j)
finExtractOne i j = Sum.inr (predAboveI i j) := by
symm
apply (Equiv.symm_apply_eq _).mp ?_
simp
simp only [Nat.succ_eq_add_one, finExtractOne_symm_inr_apply]
exact succsAbove_predAboveI hij
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
@ -252,7 +252,8 @@ lemma finExtractOne_apply_neq {n : } (i j : Fin n.succ.succ) (hij : i ≠ j)
def finExtractOnPermHom {m : } (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin m.succ.succ) :
Fin n.succ → Fin m.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
lemma finExtractOnPermHom_inv {m : } (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin m.succ.succ) :
lemma finExtractOnPermHom_inv {m : } (i : Fin n.succ.succ)
(σ : Fin n.succ.succ ≃ Fin m.succ.succ) :
(finExtractOnPermHom (σ i) σ.symm) ∘ (finExtractOnPermHom i σ) = id := by
funext x
simp only [Nat.succ_eq_add_one, Function.comp_apply, finExtractOnPermHom, Equiv.symm_apply_apply,
@ -287,13 +288,15 @@ def finExtractOnePerm {m : } (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃
right_inv x := by
simpa using congrFun (finExtractOnPermHom_inv (σ i) σ.symm) x
lemma finExtractOnePerm_equiv {n m : } (e : Fin n.succ.succ ≃ Fin m.succ.succ) (i : Fin n.succ.succ) :
e ∘ i.succAbove = (e i).succAbove ∘ finExtractOnePerm i e := by
simp [finExtractOnePerm]
lemma finExtractOnePerm_equiv {n m : } (e : Fin n.succ.succ ≃ Fin m.succ.succ)
(i : Fin n.succ.succ) :
e ∘ i.succAbove = (e i).succAbove ∘ finExtractOnePerm i e := by
simp only [Nat.succ_eq_add_one, finExtractOnePerm, Equiv.coe_fn_mk]
funext x
simp [finExtractOnPermHom]
simp only [Function.comp_apply, finExtractOnPermHom, Nat.succ_eq_add_one,
finExtractOne_symm_inr_apply]
rw [succsAbove_predAboveI]
simp
simp only [Nat.succ_eq_add_one, ne_eq, EmbeddingLike.apply_eq_iff_eq]
exact Fin.ne_succAbove i x
@[simp]
@ -437,7 +440,7 @@ lemma equivCons_succ {n m : } (e : Fin n ≃ Fin m) (i : ) (hi : i + 1 < n
simp only [Nat.succ_eq_add_one, equivCons, Equiv.toFun_as_coe, Equiv.invFun_as_coe,
Equiv.coe_fn_symm_mk]
have hi : ⟨i + 1, hi⟩ = Fin.succ ⟨i, Nat.succ_lt_succ_iff.mp hi⟩ := by rfl
simp
simp only [Equiv.coe_fn_mk]
rw [hi]
rw [Fin.cons_succ]
rfl