refactor: Style Lint
This commit is contained in:
parent
aad3afd3a7
commit
63c4cabdf4
9 changed files with 512 additions and 453 deletions
|
@ -244,7 +244,7 @@ lemma finExtractOne_apply_neq {n : ℕ} (i j : Fin n.succ.succ) (hij : i ≠ j)
|
|||
finExtractOne i j = Sum.inr (predAboveI i j) := by
|
||||
symm
|
||||
apply (Equiv.symm_apply_eq _).mp ?_
|
||||
simp
|
||||
simp only [Nat.succ_eq_add_one, finExtractOne_symm_inr_apply]
|
||||
exact succsAbove_predAboveI hij
|
||||
|
||||
/-- Given an equivalence `Fin n.succ.succ ≃ Fin n.succ.succ`, and an `i : Fin n.succ.succ`,
|
||||
|
@ -252,7 +252,8 @@ lemma finExtractOne_apply_neq {n : ℕ} (i j : Fin n.succ.succ) (hij : i ≠ j)
|
|||
def finExtractOnPermHom {m : ℕ} (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin m.succ.succ) :
|
||||
Fin n.succ → Fin m.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
|
||||
|
||||
lemma finExtractOnPermHom_inv {m : ℕ} (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin m.succ.succ) :
|
||||
lemma finExtractOnPermHom_inv {m : ℕ} (i : Fin n.succ.succ)
|
||||
(σ : Fin n.succ.succ ≃ Fin m.succ.succ) :
|
||||
(finExtractOnPermHom (σ i) σ.symm) ∘ (finExtractOnPermHom i σ) = id := by
|
||||
funext x
|
||||
simp only [Nat.succ_eq_add_one, Function.comp_apply, finExtractOnPermHom, Equiv.symm_apply_apply,
|
||||
|
@ -287,13 +288,15 @@ def finExtractOnePerm {m : ℕ} (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃
|
|||
right_inv x := by
|
||||
simpa using congrFun (finExtractOnPermHom_inv (σ i) σ.symm) x
|
||||
|
||||
lemma finExtractOnePerm_equiv {n m : ℕ} (e : Fin n.succ.succ ≃ Fin m.succ.succ) (i : Fin n.succ.succ) :
|
||||
e ∘ i.succAbove = (e i).succAbove ∘ finExtractOnePerm i e := by
|
||||
simp [finExtractOnePerm]
|
||||
lemma finExtractOnePerm_equiv {n m : ℕ} (e : Fin n.succ.succ ≃ Fin m.succ.succ)
|
||||
(i : Fin n.succ.succ) :
|
||||
e ∘ i.succAbove = (e i).succAbove ∘ finExtractOnePerm i e := by
|
||||
simp only [Nat.succ_eq_add_one, finExtractOnePerm, Equiv.coe_fn_mk]
|
||||
funext x
|
||||
simp [finExtractOnPermHom]
|
||||
simp only [Function.comp_apply, finExtractOnPermHom, Nat.succ_eq_add_one,
|
||||
finExtractOne_symm_inr_apply]
|
||||
rw [succsAbove_predAboveI]
|
||||
simp
|
||||
simp only [Nat.succ_eq_add_one, ne_eq, EmbeddingLike.apply_eq_iff_eq]
|
||||
exact Fin.ne_succAbove i x
|
||||
|
||||
@[simp]
|
||||
|
@ -437,7 +440,7 @@ lemma equivCons_succ {n m : ℕ} (e : Fin n ≃ Fin m) (i : ℕ) (hi : i + 1 < n
|
|||
simp only [Nat.succ_eq_add_one, equivCons, Equiv.toFun_as_coe, Equiv.invFun_as_coe,
|
||||
Equiv.coe_fn_symm_mk]
|
||||
have hi : ⟨i + 1, hi⟩ = Fin.succ ⟨i, Nat.succ_lt_succ_iff.mp hi⟩ := by rfl
|
||||
simp
|
||||
simp only [Equiv.coe_fn_mk]
|
||||
rw [hi]
|
||||
rw [Fin.cons_succ]
|
||||
rfl
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue