Merge pull request #238 from HEPLean/LightLikeComplex
feat: Def of general metric tensor and unit tensor
This commit is contained in:
commit
643a923321
15 changed files with 1194 additions and 540 deletions
|
@ -124,6 +124,11 @@ import HepLean.Tensors.OverColor.Discrete
|
|||
import HepLean.Tensors.OverColor.Functors
|
||||
import HepLean.Tensors.OverColor.Iso
|
||||
import HepLean.Tensors.OverColor.Lift
|
||||
import HepLean.Tensors.TensorSpecies.Basic
|
||||
import HepLean.Tensors.TensorSpecies.ContractLemmas
|
||||
import HepLean.Tensors.TensorSpecies.MetricTensor
|
||||
import HepLean.Tensors.TensorSpecies.RepIso
|
||||
import HepLean.Tensors.TensorSpecies.UnitTensor
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.Tree.Dot
|
||||
import HepLean.Tensors.Tree.Elab
|
||||
|
|
|
@ -279,6 +279,16 @@ def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ
|
|||
right_inv x := by
|
||||
simpa using congrFun (finExtractOnPermHom_inv (σ i) σ.symm) x
|
||||
|
||||
@[simp]
|
||||
lemma finExtractOnePerm_apply (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ)
|
||||
(x : Fin n.succ) : finExtractOnePerm i σ x = predAboveI (σ i)
|
||||
(σ ((finExtractOne i).symm (Sum.inr x))) := rfl
|
||||
|
||||
@[simp]
|
||||
lemma finExtractOnePerm_symm_apply (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ)
|
||||
(x : Fin n.succ) : (finExtractOnePerm i σ).symm x = predAboveI (σ.symm (σ i))
|
||||
(σ.symm ((finExtractOne (σ i)).symm (Sum.inr x))) := rfl
|
||||
|
||||
/-- The equivalence of types `Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n` extracting
|
||||
the `i` and `(i.succAbove j)`. -/
|
||||
def finExtractTwo {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
|
@ -322,4 +332,28 @@ lemma finExtractTwo_apply_snd {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
|||
rw [← Equiv.eq_symm_apply]
|
||||
simp
|
||||
|
||||
/-- Takes two maps `Fin n → Fin n` and returns the equivelance they form. -/
|
||||
def finMapToEquiv (f1 : Fin n → Fin m) (f2 : Fin m → Fin n)
|
||||
(h : ∀ x, f1 (f2 x) = x := by decide)
|
||||
(h' : ∀ x, f2 (f1 x) = x := by decide) : Fin n ≃ Fin m where
|
||||
toFun := f1
|
||||
invFun := f2
|
||||
left_inv := h'
|
||||
right_inv := h
|
||||
|
||||
@[simp]
|
||||
lemma finMapToEquiv_apply {f1 : Fin n → Fin m} {f2 : Fin m → Fin n}
|
||||
{h : ∀ x, f1 (f2 x) = x} {h' : ∀ x, f2 (f1 x) = x} (x : Fin n) :
|
||||
finMapToEquiv f1 f2 h h' x = f1 x := rfl
|
||||
|
||||
@[simp]
|
||||
lemma finMapToEquiv_symm_apply {f1 : Fin n → Fin m} {f2 : Fin m → Fin n}
|
||||
{h : ∀ x, f1 (f2 x) = x} {h' : ∀ x, f2 (f1 x) = x} (x : Fin m) :
|
||||
(finMapToEquiv f1 f2 h h').symm x = f2 x := rfl
|
||||
|
||||
lemma finMapToEquiv_symm_eq {f1 : Fin n → Fin m} {f2 : Fin m → Fin n}
|
||||
{h : ∀ x, f1 (f2 x) = x} {h' : ∀ x, f2 (f1 x) = x} :
|
||||
(finMapToEquiv f1 f2 h h').symm = finMapToEquiv f2 f1 h' h := by
|
||||
rfl
|
||||
|
||||
end HepLean.Fin
|
||||
|
|
|
@ -100,6 +100,9 @@ def toIso (m : f ⟶ g) : f ≅ g := {
|
|||
simp only [CategoryStruct.comp, Iso.symm_self_id, Iso.refl_hom, Over.id_left, types_id_apply]
|
||||
rfl}
|
||||
|
||||
@[simp]
|
||||
lemma hom_comp (m : f ⟶ g) (n : g ⟶ h) : (m ≫ n).hom = m.hom ≫ n.hom := by rfl
|
||||
|
||||
end Hom
|
||||
|
||||
section monoidal
|
||||
|
@ -273,12 +276,39 @@ def mk (f : X → C) : OverColor C := Over.mk f
|
|||
lemma mk_hom (f : X → C) : (mk f).hom = f := rfl
|
||||
open MonoidalCategory
|
||||
|
||||
@[simp]
|
||||
lemma mk_left (f : X → C) : (mk f).left = X := rfl
|
||||
|
||||
lemma Hom.fin_ext {n : ℕ} {f g : Fin n → C} (σ σ' : OverColor.mk f ⟶ OverColor.mk g)
|
||||
(h : ∀ (i : Fin n), σ.hom.left i = σ'.hom.left i) : σ = σ' := by
|
||||
apply Hom.ext
|
||||
ext i
|
||||
apply h
|
||||
|
||||
@[simp]
|
||||
lemma β_hom_toEquiv (f : X → C) (g : Y → C) :
|
||||
Hom.toEquiv (β_ (OverColor.mk f) (OverColor.mk g)).hom = Equiv.sumComm X Y := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma β_inv_toEquiv (f : X → C) (g : Y → C) :
|
||||
Hom.toEquiv (β_ (OverColor.mk f) (OverColor.mk g)).inv = Equiv.sumComm Y X := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma whiskeringLeft_toEquiv (f : X → C) (g : Y → C) (h : Z → C)
|
||||
(σ : OverColor.mk f ⟶ OverColor.mk g) :
|
||||
Hom.toEquiv (OverColor.mk h ◁ σ) = (Equiv.refl Z).sumCongr (Hom.toEquiv σ) := by
|
||||
simp [MonoidalCategory.whiskerLeft]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma whiskeringRight_toEquiv (f : X → C) (g : Y → C) (h : Z → C)
|
||||
(σ : OverColor.mk f ⟶ OverColor.mk g) :
|
||||
Hom.toEquiv (σ ▷ OverColor.mk h) = (Hom.toEquiv σ).sumCongr (Equiv.refl Z) := by
|
||||
simp [MonoidalCategory.whiskerLeft]
|
||||
rfl
|
||||
|
||||
end OverColor
|
||||
|
||||
end IndexNotation
|
||||
|
|
|
@ -111,6 +111,89 @@ lemma pairIsoSep_tmul {c1 c2 : C} (x : F.obj (Discrete.mk c1)) (y : F.obj (Discr
|
|||
HepLean.PiTensorProduct.elimPureTensor]
|
||||
exact (LinearEquiv.eq_symm_apply _).mp rfl
|
||||
|
||||
lemma pairIsoSep_inv_tprod {c1 c2 : C} (fx : (i : (𝟭 Type).obj (OverColor.mk ![c1, c2]).left) →
|
||||
CoeSort.coe (F.obj { as := (OverColor.mk ![c1, c2]).hom i })) :
|
||||
(pairIsoSep F).inv.hom (PiTensorProduct.tprod k fx) = fx (0 : Fin 2) ⊗ₜ fx (1 : Fin 2) := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||||
pairIsoSep, Fin.isValue, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons,
|
||||
Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_assoc, Iso.trans_inv, Iso.symm_inv,
|
||||
Functor.mapIso_hom, tensorIso_hom, Iso.trans_hom, Iso.symm_hom, Functor.mapIso_inv, tensor_comp,
|
||||
Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorHom_hom, mk_left,
|
||||
Functor.id_obj, mk_hom, ModuleCat.coe_comp, Function.comp_apply, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
erw [lift.map_tprod]
|
||||
erw [lift.μIso_inv_tprod]
|
||||
change (((forgetLiftApp F c1).hom.hom (((lift.obj F).map (mkIso _).inv).hom
|
||||
((PiTensorProduct.tprod k) fun i =>
|
||||
(lift.discreteFunctorMapEqIso F _) (fx ((Hom.toEquiv fin2Iso.hom).symm (Sum.inl i)))))) ⊗ₜ[k]
|
||||
(forgetLiftApp F c2).hom.hom (((lift.obj F).map (mkIso _).inv).hom ((PiTensorProduct.tprod k)
|
||||
fun i =>
|
||||
(lift.discreteFunctorMapEqIso F _) (fx ((Hom.toEquiv fin2Iso.hom).symm (Sum.inr i)))))) = _
|
||||
congr 1
|
||||
· rw [lift.map_tprod]
|
||||
rw [forgetLiftApp_hom_hom_apply_eq]
|
||||
apply congrArg
|
||||
funext x
|
||||
match x with
|
||||
| (0 : Fin 1) =>
|
||||
simp only [mk_hom, Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Matrix.cons_val_zero,
|
||||
equivToIso_mkIso_inv, Equiv.refl_symm, lift.discreteFunctorMapEqIso, eqToIso_refl,
|
||||
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Matrix.cons_val_one,
|
||||
Matrix.head_cons, instMonoidalCategoryStruct_tensorObj_left, Functor.id_obj,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· rw [lift.map_tprod]
|
||||
rw [forgetLiftApp_hom_hom_apply_eq]
|
||||
apply congrArg
|
||||
funext x
|
||||
match x with
|
||||
| (0 : Fin 1) =>
|
||||
simp only [mk_hom, Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Matrix.cons_val_one,
|
||||
Matrix.head_cons, equivToIso_mkIso_inv, Equiv.refl_symm, lift.discreteFunctorMapEqIso,
|
||||
eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
|
||||
Matrix.cons_val_zero, instMonoidalCategoryStruct_tensorObj_left, Functor.id_obj,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
|
||||
open HepLean.Fin
|
||||
|
||||
/-! TODO: Find a better place for this. -/
|
||||
lemma pairIsoSep_β_perm_cond (c1 c2 : C) : ∀ (x : Fin (Nat.succ 0).succ), ![c2, c1] x =
|
||||
(![c1, c2] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x:= by
|
||||
intro x
|
||||
fin_cases x
|
||||
· rfl
|
||||
· rfl
|
||||
|
||||
lemma pairIsoSep_β {c1 c2 : C} (x : ↑(F.obj { as := c1 } ⊗ F.obj { as := c2 }).V) :
|
||||
(Discrete.pairIsoSep F).hom.hom ((β_ (F.obj (Discrete.mk c1)) _).hom.hom x) =
|
||||
((lift.obj F).map ((OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0])
|
||||
(pairIsoSep_β_perm_cond c1 c2)))).hom
|
||||
((Discrete.pairIsoSep F).hom.hom x) := by
|
||||
have h1 : (Discrete.pairIsoSep F).hom.hom ∘ₗ
|
||||
(β_ (F.obj (Discrete.mk c1)) (F.obj (Discrete.mk c2))).hom.hom
|
||||
= ((lift.obj F).map ((OverColor.equivToHomEq
|
||||
(finMapToEquiv ![1, 0] ![1, 0]) (pairIsoSep_β_perm_cond c1 c2)))).hom ∘ₗ
|
||||
(Discrete.pairIsoSep F).hom.hom := by
|
||||
apply TensorProduct.ext'
|
||||
intro x y
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Action.instMonoidalCategory_tensorObj_V, LinearMap.coe_comp, Function.comp_apply, Fin.isValue]
|
||||
change (Discrete.pairIsoSep F).hom.hom (y ⊗ₜ x) = ((lift.obj F).map
|
||||
((OverColor.equivToHomEq _ (pairIsoSep_β_perm_cond c1 c2)))).hom
|
||||
((Discrete.pairIsoSep F).hom.hom (x ⊗ₜ y))
|
||||
rw [Discrete.pairIsoSep_tmul, Discrete.pairIsoSep_tmul]
|
||||
erw [OverColor.lift.map_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
fin_cases i
|
||||
· simp [lift.discreteFunctorMapEqIso]
|
||||
rfl
|
||||
· simp [lift.discreteFunctorMapEqIso]
|
||||
rfl
|
||||
exact congrFun (congrArg (fun f => f.toFun) h1) _
|
||||
|
||||
/-- The isomorphism between
|
||||
`F.obj (Discrete.mk c1) ⊗ F.obj (Discrete.mk c2) ⊗ F.obj (Discrete.mk c3)` and
|
||||
`(lift.obj F).obj (OverColor.mk ![c1,c2])` formed by the tensorate. -/
|
||||
|
@ -175,6 +258,24 @@ lemma pairτ_tmul {c : C} (x : F.obj (Discrete.mk c))
|
|||
def τPair (τ : C → C) : Discrete C ⥤ Rep k G :=
|
||||
((Discrete.functor (Discrete.mk ∘ τ) : Discrete C ⥤ Discrete C) ⋙ F) ⊗ F
|
||||
|
||||
/-!
|
||||
|
||||
## A need lemma about rep
|
||||
|
||||
-/
|
||||
|
||||
@[simp]
|
||||
lemma rep_iso_inv_hom_apply (x y : Rep k G) (f : x ≅ y) (i : x) :
|
||||
f.inv.hom (f.hom.hom i) = i := by
|
||||
change (f.hom ≫ f.inv).hom i = i
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma rep_iso_hom_inv_apply (x y : Rep k G) (f : x ≅ y) (i : y) :
|
||||
f.hom.hom (f.inv.hom i) = i := by
|
||||
change (f.inv ≫ f.hom).hom i = i
|
||||
simp
|
||||
|
||||
end
|
||||
end Discrete
|
||||
end OverColor
|
||||
|
|
|
@ -32,6 +32,11 @@ lemma equivToIso_homToEquiv {c : X → C} (e : X ≃ Y) :
|
|||
Hom.toEquiv (equivToIso (c := c) e).hom = e := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma equivToIso_inv_homToEquiv {c : X → C} (e : X ≃ Y) :
|
||||
Hom.toEquiv (equivToIso (c := c) e).inv = e.symm := by
|
||||
rfl
|
||||
|
||||
/-- The homomorphism between `c : X → C` and `c ∘ e.symm` as objects in `OverColor C` for an
|
||||
equivalence `e`. -/
|
||||
def equivToHom {c : X → C} (e : X ≃ Y) : mk c ⟶ mk (c ∘ e.symm) :=
|
||||
|
@ -65,6 +70,17 @@ lemma mkIso_refl_hom {c : X → C} : (mkIso (by rfl : c =c)).hom = 𝟙 _ := by
|
|||
rw [mkIso]
|
||||
rfl
|
||||
|
||||
lemma mkIso_hom_hom_left {c1 c2 : X → C} (h : c1 = c2) : (mkIso h).hom.hom.left =
|
||||
(Equiv.refl X).toFun := by
|
||||
rw [mkIso]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma mkIso_hom_hom_left_apply {c1 c2 : X → C} (h : c1 = c2) (x : X) :
|
||||
(mkIso h).hom.hom.left x = x := by
|
||||
rw [mkIso_hom_hom_left]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma equivToIso_mkIso_hom {c1 c2 : X → C} (h : c1 = c2) :
|
||||
Hom.toEquiv (mkIso h).hom = Equiv.refl _ := by
|
||||
|
@ -81,6 +97,17 @@ def equivToHomEq {c : X → C} {c1 : Y → C} (e : X ≃ Y)
|
|||
(h : ∀ x, c1 x = (c ∘ e.symm) x := by decide) : mk c ⟶ mk c1 :=
|
||||
(equivToHom e).trans (mkIso (funext fun x => (h x).symm)).hom
|
||||
|
||||
@[simp]
|
||||
lemma equivToHomEq_hom_left {c : X → C} {c1 : Y → C} (e : X ≃ Y)
|
||||
(h : ∀ x, c1 x = (c ∘ e.symm) x := by decide) : (equivToHomEq e h).hom.left =
|
||||
e.toFun := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma equivToHomEq_toEquiv {c : X → C} {c1 : Y → C} (e : X ≃ Y)
|
||||
(h : ∀ x, c1 x = (c ∘ e.symm) x := by decide) : Hom.toEquiv (equivToHomEq e h) = e := by
|
||||
rfl
|
||||
|
||||
/-- The isomorphism splitting a `mk c` for `Fin 2 → C` into the tensor product of
|
||||
the `Fin 1 → C` maps defined by `c 0` and `c 1`. -/
|
||||
def fin2Iso {c : Fin 2 → C} : mk c ≅ mk ![c 0] ⊗ mk ![c 1] := by
|
||||
|
@ -163,6 +190,15 @@ def extractTwo {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ)
|
|||
equivToHomEq (Equiv.refl _) (by simp) ≫ extractOne j (extractOne i σ) ≫
|
||||
equivToHomEq (Equiv.refl _) (by simp)
|
||||
|
||||
@[simp]
|
||||
lemma extractTwo_hom_left_apply {n : ℕ} (i : Fin n.succ.succ.succ) (j : Fin n.succ.succ)
|
||||
{c1 c2 : Fin n.succ.succ.succ → C} (σ : mk c1 ⟶ mk c2) (x : Fin n.succ) :
|
||||
(extractTwo i j σ).hom.left x =
|
||||
(finExtractOnePerm ((finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
|
||||
(finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ))) x := by
|
||||
simp only [extractTwo, extractOne]
|
||||
rfl
|
||||
|
||||
/-- Removes a given `i : Fin n.succ.succ` and `j : Fin n.succ` from a morphism in `OverColor C`.
|
||||
This is from and to different (by equivalent) objects to `extractTwo`. -/
|
||||
def extractTwoAux {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ)
|
||||
|
@ -231,7 +267,7 @@ lemma extractTwo_finExtractTwo_succ {n : ℕ} (i : Fin n.succ.succ.succ) (j : Fi
|
|||
simp only [Nat.succ_eq_add_one, Equiv.apply_symm_apply]
|
||||
match k with
|
||||
| Sum.inl (Sum.inl 0) =>
|
||||
simp
|
||||
simp [-OverColor.mk_left]
|
||||
| Sum.inl (Sum.inr 0) =>
|
||||
simp only [Fin.isValue, finExtractTwo_symm_inl_inr_apply, Sum.map_inl, id_eq]
|
||||
have h1 : ((Hom.toEquiv σ) (Fin.succAbove
|
||||
|
|
543
HepLean/Tensors/TensorSpecies/Basic.lean
Normal file
543
HepLean/Tensors/TensorSpecies/Basic.lean
Normal file
|
@ -0,0 +1,543 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Iso
|
||||
import HepLean.Tensors.OverColor.Discrete
|
||||
import HepLean.Tensors.OverColor.Lift
|
||||
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
|
||||
/-!
|
||||
|
||||
# Tensor species
|
||||
|
||||
- A tensor species is a structure including all of the ingredients needed to define a type of
|
||||
tensor.
|
||||
- Examples of tensor species will include real Lorentz tensors, complex Lorentz tensors, and
|
||||
Einstien tensors.
|
||||
- Tensor species are built upon symmetric monoidal categories.
|
||||
|
||||
-/
|
||||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
/-- The structure of a type of tensors e.g. Lorentz tensors, ordinary tensors
|
||||
(vectors and matrices), complex Lorentz tensors. -/
|
||||
structure TensorSpecies where
|
||||
/-- The commutative ring over which we want to consider the tensors to live in,
|
||||
usually `ℝ` or `ℂ`. -/
|
||||
k : Type
|
||||
/-- An instance of `k` as a commutative ring. -/
|
||||
k_commRing : CommRing k
|
||||
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/
|
||||
G : Type
|
||||
/-- An instance of `G` as a group. -/
|
||||
G_group : Group G
|
||||
/-- The colors of indices e.g. up or down. -/
|
||||
C : Type
|
||||
/-- A functor from `C` to `Rep k G` giving our building block representations.
|
||||
Equivalently a function `C → Re k G`. -/
|
||||
FD : Discrete C ⥤ Rep k G
|
||||
/-- A specification of the dimension of each color in C. This will be used for explicit
|
||||
evaluation of tensors. -/
|
||||
repDim : C → ℕ
|
||||
/-- repDim is not zero for any color. This allows casting of `ℕ` to `Fin (S.repDim c)`. -/
|
||||
repDim_neZero (c : C) : NeZero (repDim c)
|
||||
/-- A basis for each Module, determined by the evaluation map. -/
|
||||
basis : (c : C) → Basis (Fin (repDim c)) k (FD.obj (Discrete.mk c)).V
|
||||
/-- A map from `C` to `C`. An involution. -/
|
||||
τ : C → C
|
||||
/-- The condition that `τ` is an involution. -/
|
||||
τ_involution : Function.Involutive τ
|
||||
/-- The natural transformation describing contraction. -/
|
||||
contr : OverColor.Discrete.pairτ FD τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
|
||||
/-- Contraction is symmetric with respect to duals. -/
|
||||
contr_tmul_symm (c : C) (x : FD.obj (Discrete.mk c))
|
||||
(y : FD.obj (Discrete.mk (τ c))) :
|
||||
(contr.app (Discrete.mk c)).hom (x ⊗ₜ[k] y) = (contr.app (Discrete.mk (τ c))).hom
|
||||
(y ⊗ₜ (FD.map (Discrete.eqToHom (τ_involution c).symm)).hom x)
|
||||
/-- The natural transformation describing the unit. -/
|
||||
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FD τ
|
||||
/-- The unit is symmetric. -/
|
||||
unit_symm (c : C) :
|
||||
((unit.app (Discrete.mk c)).hom (1 : k)) =
|
||||
((FD.obj (Discrete.mk (τ (c)))) ◁
|
||||
(FD.map (Discrete.eqToHom (τ_involution c)))).hom
|
||||
((β_ (FD.obj (Discrete.mk (τ (τ c)))) (FD.obj (Discrete.mk (τ (c))))).hom.hom
|
||||
((unit.app (Discrete.mk (τ c))).hom (1 : k)))
|
||||
/-- Contraction with unit leaves invariant. -/
|
||||
contr_unit (c : C) (x : FD.obj (Discrete.mk (c))) :
|
||||
(λ_ (FD.obj (Discrete.mk (c)))).hom.hom
|
||||
(((contr.app (Discrete.mk c)) ▷ (FD.obj (Discrete.mk (c)))).hom
|
||||
((α_ _ _ (FD.obj (Discrete.mk (c)))).inv.hom
|
||||
(x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x
|
||||
/-- The natural transformation describing the metric. -/
|
||||
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FD
|
||||
/-- On contracting metrics we get back the unit. -/
|
||||
contr_metric (c : C) :
|
||||
(β_ (FD.obj (Discrete.mk c)) (FD.obj (Discrete.mk (τ c)))).hom.hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ (λ_ (FD.obj (Discrete.mk (τ c)))).hom).hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ ((contr.app (Discrete.mk c)) ▷
|
||||
(FD.obj (Discrete.mk (τ c))))).hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ (α_ (FD.obj (Discrete.mk (c)))
|
||||
(FD.obj (Discrete.mk (τ c))) (FD.obj (Discrete.mk (τ c)))).inv).hom
|
||||
((α_ (FD.obj (Discrete.mk (c))) (FD.obj (Discrete.mk (c)))
|
||||
(FD.obj (Discrete.mk (τ c)) ⊗ FD.obj (Discrete.mk (τ c)))).hom.hom
|
||||
((metric.app (Discrete.mk c)).hom (1 : k) ⊗ₜ[k]
|
||||
(metric.app (Discrete.mk (τ c))).hom (1 : k))))))
|
||||
= (unit.app (Discrete.mk c)).hom (1 : k)
|
||||
|
||||
noncomputable section
|
||||
|
||||
namespace TensorSpecies
|
||||
open OverColor
|
||||
|
||||
variable (S : TensorSpecies)
|
||||
|
||||
/-- The field `k` of a TensorSpecies has the instance of a commuative ring. -/
|
||||
instance : CommRing S.k := S.k_commRing
|
||||
|
||||
/-- The field `G` of a TensorSpecies has the instance of a group. -/
|
||||
instance : Group S.G := S.G_group
|
||||
|
||||
/-- The field `repDim` of a TensorSpecies is non-zero for all colors. -/
|
||||
instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c
|
||||
|
||||
/-- The lift of the functor `S.F` to a monoidal functor. -/
|
||||
def F : BraidedFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FD
|
||||
|
||||
/- The definition of `F` as a lemma. -/
|
||||
lemma F_def : F S = (OverColor.lift).obj S.FD := rfl
|
||||
|
||||
lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ}
|
||||
(h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) =
|
||||
S.τ (c ((Hom.toEquiv σ).symm i)) := by
|
||||
have h1 := Hom.toEquiv_comp_apply σ
|
||||
simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1
|
||||
rw [h1, h1]
|
||||
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply]
|
||||
rw [← h]
|
||||
congr
|
||||
simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom,
|
||||
HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk]
|
||||
erw [Equiv.apply_symm_apply]
|
||||
rw [HepLean.Fin.succsAbove_predAboveI]
|
||||
erw [Equiv.apply_symm_apply]
|
||||
simp only [Nat.succ_eq_add_one, ne_eq]
|
||||
erw [Equiv.apply_eq_iff_eq]
|
||||
exact (Fin.succAbove_ne i j).symm
|
||||
|
||||
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
|
||||
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FD`. -/
|
||||
def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
|
||||
(OverColor.Discrete.pairτ S.FD S.τ).obj { as := c i } := by
|
||||
apply (S.F.mapIso
|
||||
(OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
|
||||
apply (S.F.μIso _ _).symm.trans
|
||||
apply tensorIso ?_ ?_
|
||||
· symm
|
||||
apply (OverColor.forgetLiftApp S.FD (c i)).symm.trans
|
||||
apply S.F.mapIso
|
||||
apply OverColor.mkIso
|
||||
funext x
|
||||
fin_cases x
|
||||
rfl
|
||||
· symm
|
||||
apply (OverColor.forgetLiftApp S.FD (S.τ (c i))).symm.trans
|
||||
apply S.F.mapIso
|
||||
apply OverColor.mkIso
|
||||
funext x
|
||||
fin_cases x
|
||||
simp [h]
|
||||
|
||||
lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : S.FD.obj { as := c i })
|
||||
(y : S.FD.obj { as := S.τ (c i) }) :
|
||||
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
|
||||
PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map
|
||||
(eqToHom (by simp [h]))).hom y) := by
|
||||
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
|
||||
Iso.symm_inv, Functor.mapIso_hom, tensor_comp, MonoidalFunctor.μIso_hom, Category.assoc,
|
||||
LaxMonoidalFunctor.μ_natural, Functor.mapIso_inv, Action.comp_hom,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Functor.id_obj, mk_hom,
|
||||
Fin.isValue]
|
||||
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((S.F.μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom
|
||||
((((OverColor.forgetLiftApp S.FD (c i)).inv.hom x) ⊗ₜ[S.k]
|
||||
((OverColor.forgetLiftApp S.FD (S.τ (c i))).inv.hom y))))) = _
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue]
|
||||
erw [OverColor.forgetLiftAppV_symm_apply,
|
||||
OverColor.forgetLiftAppV_symm_apply S.FD (S.τ (c i))]
|
||||
change ((OverColor.lift.obj S.FD).map (OverColor.mkSum
|
||||
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
(((OverColor.lift.obj S.FD).μ (OverColor.mk fun _ => c i)
|
||||
(OverColor.mk fun _ => S.τ (c i))).hom
|
||||
(((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _
|
||||
rw [OverColor.lift.obj_μ_tprod_tmul S.FD]
|
||||
change ((OverColor.lift.obj S.FD).map
|
||||
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FD]
|
||||
change ((OverColor.lift.obj S.FD).map
|
||||
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((PiTensorProduct.tprod S.k _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FD]
|
||||
apply congrArg
|
||||
funext r
|
||||
match r with
|
||||
| Sum.inl 0 =>
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl,
|
||||
Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor]
|
||||
simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
| Sum.inr 0 =>
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl,
|
||||
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv,
|
||||
Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
|
||||
lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : (k : Fin 1 ⊕ Fin 1) → (S.FD.obj
|
||||
{ as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) :
|
||||
(S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) =
|
||||
x (Sum.inl 0) ⊗ₜ[S.k] ((S.FD.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
|
||||
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
|
||||
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
|
||||
(PiTensorProduct.tprod S.k x)
|
||||
· rfl
|
||||
erw [← LinearEquiv.eq_symm_apply]
|
||||
erw [contrFin1Fin1_inv_tmul]
|
||||
congr
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl 0 =>
|
||||
rfl
|
||||
| Sum.inr 0 =>
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
|
||||
Discrete.functor_obj_eq_as]
|
||||
change _ = ((S.FD.map (eqToHom _)) ≫ (S.FD.map (eqToHom _))).hom (x (Sum.inr 0))
|
||||
rw [← Functor.map_comp]
|
||||
simp
|
||||
exact h
|
||||
|
||||
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
|
||||
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
|
||||
def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FD S.τ).obj
|
||||
(Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
|
||||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <| by
|
||||
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
|
||||
lemma contrIso_hom_hom {n : ℕ} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} :
|
||||
(S.contrIso c1 i j h).hom.hom =
|
||||
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
|
||||
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
|
||||
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
|
||||
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗
|
||||
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by
|
||||
rfl
|
||||
|
||||
/-- `contrMap` is a function that takes a natural number `n`, a function `c` from
|
||||
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type
|
||||
`Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism
|
||||
corresponding to the contraction of the `i`th index with the `i.succAbove j` index.
|
||||
--/
|
||||
def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk c) ⟶
|
||||
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(S.contrIso c i j h).hom ≫
|
||||
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
|
||||
(MonoidalCategory.leftUnitor _).hom
|
||||
|
||||
/-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/
|
||||
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
|
||||
|
||||
/-- Casts an element of `(S.F.obj (OverColor.mk c)).V` for `c` a map from `Fin 0` to an
|
||||
element of the field. -/
|
||||
def castFin0ToField {c : Fin 0 → S.C} : (S.F.obj (OverColor.mk c)).V →ₗ[S.k] S.k :=
|
||||
(PiTensorProduct.isEmptyEquiv (Fin 0)).toLinearMap
|
||||
|
||||
lemma castFin0ToField_tprod {c : Fin 0 → S.C}
|
||||
(x : (i : Fin 0) → S.FD.obj (Discrete.mk (c i))) :
|
||||
castFin0ToField S (PiTensorProduct.tprod S.k x) = 1 := by
|
||||
simp only [castFin0ToField, mk_hom, Functor.id_obj, LinearEquiv.coe_coe]
|
||||
erw [PiTensorProduct.isEmptyEquiv_apply_tprod]
|
||||
|
||||
lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : (i : Fin n.succ.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
|
||||
(S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k]
|
||||
(S.FD.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
|
||||
• (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) :
|
||||
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by
|
||||
rw [contrMap, contrIso]
|
||||
simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom,
|
||||
tensorIso_hom, Monoidal.tensorUnit_obj, tensorHom_id,
|
||||
Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_tensorHom_hom, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
|
||||
Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as]
|
||||
change (λ_ ((lift.obj S.FD).obj _)).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)
|
||||
∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) x)))))) = _
|
||||
rw [lift.map_tprod]
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷
|
||||
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso (OverColor.mk
|
||||
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm i_1))))))) = _
|
||||
rw [lift.map_tprod]
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
((lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm i_1)))))))) = _
|
||||
rw [lift.μIso_inv_tprod]
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
((lift.discreteFunctorMapEqIso S.FD _) (x
|
||||
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm
|
||||
(Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _) ((lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv
|
||||
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _
|
||||
rw [TensorProduct.map_tmul]
|
||||
rw [contrFin1Fin1_hom_hom_tprod]
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, mk_hom, Function.comp_apply,
|
||||
Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv,
|
||||
Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply]
|
||||
rw [Action.instMonoidalCategory_leftUnitor_hom_hom]
|
||||
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue,
|
||||
ModuleCat.MonoidalCategory.leftUnitor_hom_apply]
|
||||
congr 1
|
||||
/- The contraction. -/
|
||||
· simp only [Fin.isValue, castToField]
|
||||
congr 2
|
||||
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
(x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue]
|
||||
have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) :
|
||||
(S.FD.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FD.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
subst hbd
|
||||
rfl
|
||||
refine h1' ?_ ?_ ?_
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply]
|
||||
simp [h]
|
||||
/- The tensor. -/
|
||||
· erw [lift.map_tprod]
|
||||
apply congrArg
|
||||
funext d
|
||||
simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
|
||||
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
|
||||
simp only [Nat.succ_eq_add_one]
|
||||
have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d))
|
||||
= (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d
|
||||
have h1' {a b : Fin n.succ.succ} (h : a = b) :
|
||||
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
||||
subst h
|
||||
simp
|
||||
exact h1' h1
|
||||
|
||||
/-!
|
||||
|
||||
## Evalutation of indices.
|
||||
|
||||
-/
|
||||
|
||||
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ`
|
||||
allowing us to undertake evaluation. -/
|
||||
def evalIso {n : ℕ} (c : Fin n.succ → S.C)
|
||||
(i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FD.obj (Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)) :=
|
||||
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractOne i))).trans <|
|
||||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <|
|
||||
tensorIso
|
||||
((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; rfl))).trans
|
||||
(OverColor.forgetLiftApp S.FD (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
|
||||
lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ)
|
||||
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.evalIso c i).hom.hom (PiTensorProduct.tprod S.k x) =
|
||||
x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, F_def, evalIso,
|
||||
Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
|
||||
Action.instMonoidalCategory_tensorHom_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom ⊗
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractOne i)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.map_tprod]
|
||||
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom ⊗
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
|
||||
(((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.map_tprod]
|
||||
change ((TensorProduct.map (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom)
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom))
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
((((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.μIso_inv_tprod]
|
||||
rw [TensorProduct.map_tmul]
|
||||
erw [lift.map_tprod]
|
||||
simp only [Nat.succ_eq_add_one, CategoryStruct.comp, Functor.id_obj,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, Sum.elim_inl, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm,
|
||||
LinearMap.coe_comp, Sum.elim_inr]
|
||||
congr 1
|
||||
· change (forgetLiftApp S.FD (c i)).hom.hom
|
||||
(((lift.obj S.FD).map (mkIso _).hom).hom
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
rw [lift.map_tprod]
|
||||
rw [forgetLiftApp_hom_hom_apply_eq]
|
||||
apply congrArg
|
||||
funext i
|
||||
match i with
|
||||
| (0 : Fin 1) =>
|
||||
simp only [mk_hom, Fin.isValue, Function.comp_apply, lift.discreteFunctorMapEqIso,
|
||||
eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· apply congrArg
|
||||
funext k
|
||||
simp only [lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv,
|
||||
eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
(x ((HepLean.Fin.finExtractOne i).symm ((Sum.inr k)))) = _
|
||||
have h1' {a b : Fin n.succ} (h : a = b) :
|
||||
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
||||
subst h
|
||||
simp
|
||||
refine h1' ?_
|
||||
exact HepLean.Fin.finExtractOne_symm_inr_apply i k
|
||||
|
||||
/-- The linear map giving the coordinate of a vector with respect to the given basis.
|
||||
Important Note: This is not a morphism in the category of representations. In general,
|
||||
it cannot be lifted thereto. -/
|
||||
def evalLinearMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
|
||||
S.FD.obj { as := c i } →ₗ[S.k] S.k where
|
||||
toFun := fun v => (S.basis (c i)).repr v e
|
||||
map_add' := by simp
|
||||
map_smul' := by simp
|
||||
|
||||
/-- The evaluation map, used to evaluate indices of tensors.
|
||||
Important Note: The evaluation map is in general, not equivariant with respect to
|
||||
group actions. It is a morphism in the underlying module category, not the category
|
||||
of representations. -/
|
||||
def evalMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
|
||||
(S.F.obj (OverColor.mk c)).V ⟶ (S.F.obj (OverColor.mk (c ∘ i.succAbove))).V :=
|
||||
(S.evalIso c i).hom.hom ≫ ((Action.forgetMonoidal _ _).μIso _ _).inv
|
||||
≫ ModuleCat.asHom (TensorProduct.map (S.evalLinearMap i e) LinearMap.id) ≫
|
||||
ModuleCat.asHom (TensorProduct.lid S.k _).toLinearMap
|
||||
|
||||
lemma evalMap_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i)))
|
||||
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.evalMap i e) (PiTensorProduct.tprod S.k x) =
|
||||
(((S.basis (c i)).repr (x i) e) : S.k) •
|
||||
(PiTensorProduct.tprod S.k
|
||||
(fun k => x (i.succAbove k)) : S.F.obj (OverColor.mk (c ∘ i.succAbove))) := by
|
||||
rw [evalMap]
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor, Action.forget_obj, Functor.id_obj, mk_hom,
|
||||
Function.comp_apply, ModuleCat.coe_comp]
|
||||
erw [evalIso_tprod]
|
||||
change ((TensorProduct.lid S.k ↑((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove))).V))
|
||||
(((TensorProduct.map (S.evalLinearMap i e) LinearMap.id))
|
||||
(((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FD.obj { as := c i })
|
||||
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)))).inv
|
||||
(x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _
|
||||
simp only [Nat.succ_eq_add_one, Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor,
|
||||
Action.forget_obj, Action.instMonoidalCategory_tensorObj_V, MonoidalFunctor.μIso,
|
||||
Action.forgetMonoidal_toLaxMonoidalFunctor_μ, asIso_inv, IsIso.inv_id, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Functor.id_obj, mk_hom, Function.comp_apply, ModuleCat.id_apply, TensorProduct.map_tmul,
|
||||
LinearMap.id_coe, id_eq, TensorProduct.lid_tmul]
|
||||
rfl
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
140
HepLean/Tensors/TensorSpecies/ContractLemmas.lean
Normal file
140
HepLean/Tensors/TensorSpecies/ContractLemmas.lean
Normal file
|
@ -0,0 +1,140 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.TensorSpecies.UnitTensor
|
||||
/-!
|
||||
|
||||
## Contraction of specific tensor types
|
||||
|
||||
-/
|
||||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open OverColor
|
||||
open HepLean.Fin
|
||||
open TensorProduct
|
||||
noncomputable section
|
||||
|
||||
namespace TensorSpecies
|
||||
open TensorTree
|
||||
|
||||
variable {S : TensorSpecies}
|
||||
|
||||
/-- Expands the inner contraction of two 2-tensors which are
|
||||
tprods in terms of basic categorical
|
||||
constructions and fields of the tensor species. -/
|
||||
lemma contr_two_two_inner_tprod (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
|
||||
(fx : (i : (𝟭 Type).obj (OverColor.mk ![c, c]).left) →
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![c, c]).hom i }))
|
||||
(y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)]))
|
||||
(fy : (i : (𝟭 Type).obj (OverColor.mk ![S.τ c, S.τ c]).left) →
|
||||
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![S.τ c, S.τ c]).hom i }))
|
||||
(hx : x = PiTensorProduct.tprod S.k fx)
|
||||
(hy : y = PiTensorProduct.tprod S.k fy) :
|
||||
{x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by
|
||||
funext x
|
||||
fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
|
||||
(((S.FD.obj (Discrete.mk c)) ◁ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
|
||||
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
|
||||
(S.FD.obj (Discrete.mk (S.τ c))))).hom
|
||||
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
|
||||
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
|
||||
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
|
||||
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
|
||||
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ
|
||||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))) := by
|
||||
subst hx
|
||||
subst hy
|
||||
rw [Discrete.pairIsoSep_inv_tprod S.FD fx, Discrete.pairIsoSep_inv_tprod S.FD fy]
|
||||
change _ = (S.F.map (OverColor.mkIso _).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
|
||||
((fx (0 : Fin 2) ⊗ₜ[S.k] (λ_ (S.FD.obj { as := S.τ c }).V).hom
|
||||
((S.contr.app { as := c }).hom (fx (1 : Fin 2)
|
||||
⊗ₜ[S.k] fy (0 : Fin 2)) ⊗ₜ[S.k] fy (1 : Fin 2)))))
|
||||
simp only [F_def, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Monoidal.tensorUnit_obj,
|
||||
Action.instMonoidalCategory_tensorUnit_V, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
Function.comp_apply, ModuleCat.MonoidalCategory.leftUnitor_hom_apply, tmul_smul, map_smul]
|
||||
conv_lhs =>
|
||||
simp only [Nat.reduceAdd, Fin.isValue, contr_tensor, prod_tensor, Functor.id_obj, mk_hom,
|
||||
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
tensorNode_tensor, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_leftUnitor_hom_hom,
|
||||
Monoidal.tensorUnit_obj, Action.instMonoidalCategory_whiskerRight_hom,
|
||||
Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_associator_hom_hom,
|
||||
F_def]
|
||||
erw [OverColor.lift.μ_tmul_tprod S.FD]
|
||||
rw (config := { transparency := .instances }) [OverColor.lift.map_tprod]
|
||||
rw (config := { transparency := .instances }) [contrMap_tprod]
|
||||
congr 1
|
||||
/- The contraction. -/
|
||||
· congr
|
||||
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
|
||||
Function.comp_apply, Action.FunctorCategoryEquivalence.functor_obj_obj, mk_hom,
|
||||
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
|
||||
Function.comp_apply, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Nat.reduceAdd, eqToHom_refl,
|
||||
Discrete.functor_map_id, Action.id_hom, mk_hom, equivToIso_homToEquiv,
|
||||
lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Iso.refl_inv,
|
||||
Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
/- The tensor. -/
|
||||
· rw (config := { transparency := .instances }) [Discrete.pairIsoSep_tmul,
|
||||
OverColor.lift.map_tprod]
|
||||
apply congrArg
|
||||
funext k
|
||||
match k with
|
||||
| (0 : Fin 2) => rfl
|
||||
| (1 : Fin 2) => rfl
|
||||
|
||||
/-- Expands the inner contraction of two 2-tensors in terms of basic categorical
|
||||
constructions and fields of the tensor species. -/
|
||||
lemma contr_two_two_inner (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
|
||||
(y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)])) :
|
||||
{x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by
|
||||
funext x
|
||||
fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
|
||||
(((S.FD.obj (Discrete.mk c)) ◁ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
|
||||
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
|
||||
(S.FD.obj (Discrete.mk (S.τ c))))).hom
|
||||
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
|
||||
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
|
||||
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
|
||||
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
|
||||
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ
|
||||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))) := by
|
||||
simp only [Nat.reduceAdd, Fin.isValue, contr_tensor, prod_tensor, Functor.id_obj, mk_hom,
|
||||
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
tensorNode_tensor, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_leftUnitor_hom_hom,
|
||||
Monoidal.tensorUnit_obj, Action.instMonoidalCategory_whiskerRight_hom,
|
||||
Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_associator_hom_hom]
|
||||
refine PiTensorProduct.induction_on' x ?_ (by
|
||||
intro a b hx hy
|
||||
simp only [Fin.isValue, Nat.reduceAdd, Functor.id_obj, mk_hom, add_tmul,
|
||||
map_add, hx, hy])
|
||||
intro rx fx
|
||||
refine PiTensorProduct.induction_on' y ?_ (by
|
||||
intro a b hx hy
|
||||
simp_all only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, mk_hom,
|
||||
PiTensorProduct.tprodCoeff_eq_smul_tprod, map_smul, map_add, tmul_add])
|
||||
intro ry fy
|
||||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul]
|
||||
apply congrArg
|
||||
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
|
||||
apply congrArg
|
||||
simpa using contr_two_two_inner_tprod c (PiTensorProduct.tprod S.k fx) fx
|
||||
(PiTensorProduct.tprod S.k fy) fy
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
128
HepLean/Tensors/TensorSpecies/MetricTensor.lean
Normal file
128
HepLean/Tensors/TensorSpecies/MetricTensor.lean
Normal file
|
@ -0,0 +1,128 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.TensorSpecies.UnitTensor
|
||||
import HepLean.Tensors.TensorSpecies.ContractLemmas
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||||
import HepLean.Tensors.Tree.NodeIdentities.PermProd
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
||||
/-!
|
||||
|
||||
## Metrics in tensor trees
|
||||
|
||||
-/
|
||||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open OverColor
|
||||
open HepLean.Fin
|
||||
open TensorProduct
|
||||
noncomputable section
|
||||
|
||||
namespace TensorSpecies
|
||||
open TensorTree
|
||||
|
||||
/-- The metric of a tensor species in a `PiTensorProduct`. -/
|
||||
def metricTensor (S : TensorSpecies) (c : S.C) : S.F.obj (OverColor.mk ![c, c]) :=
|
||||
(OverColor.Discrete.pairIsoSep S.FD).hom.hom ((S.metric.app (Discrete.mk c)).hom (1 : S.k))
|
||||
|
||||
variable {S : TensorSpecies}
|
||||
|
||||
lemma metricTensor_congr {c c' : S.C} (h : c = c') : {S.metricTensor c | μ ν}ᵀ.tensor =
|
||||
(perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by subst h; fin_cases x <;> rfl))
|
||||
{S.metricTensor c' | μ ν}ᵀ).tensor := by
|
||||
subst h
|
||||
change _ = (S.F.map (𝟙 _)).hom (S.metricTensor c)
|
||||
simp
|
||||
|
||||
lemma pairIsoSep_inv_metricTensor (c : S.C) :
|
||||
(Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor c) =
|
||||
(S.metric.app (Discrete.mk c)).hom (1 : S.k) := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||||
metricTensor, Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V]
|
||||
erw [Discrete.rep_iso_inv_hom_apply]
|
||||
|
||||
/-- Contraction of a metric tensor with a metric tensor gives the unit.
|
||||
Like `S.contr_metric` but with the braiding appearing on the side of the unit. -/
|
||||
lemma contr_metric_braid_unit (c : S.C) : (((S.FD.obj (Discrete.mk c)) ◁
|
||||
(λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
|
||||
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
|
||||
(S.FD.obj (Discrete.mk (S.τ c))))).hom
|
||||
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
|
||||
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
|
||||
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
|
||||
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
|
||||
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor c) ⊗ₜ
|
||||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor (S.τ c)))))))) =
|
||||
(β_ (S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk c))).hom.hom
|
||||
((S.unit.app (Discrete.mk c)).hom (1 : S.k)) := by
|
||||
apply (β_ _ _).toLinearEquiv.toEquiv.injective
|
||||
rw [pairIsoSep_inv_metricTensor, pairIsoSep_inv_metricTensor]
|
||||
erw [S.contr_metric c]
|
||||
change _ = (β_ (S.FD.obj { as := S.τ c }) (S.FD.obj { as := c })).inv.hom
|
||||
((β_ (S.FD.obj { as := S.τ c }) (S.FD.obj { as := c })).hom.hom _)
|
||||
rw [Discrete.rep_iso_inv_hom_apply]
|
||||
|
||||
lemma metricTensor_contr_dual_metricTensor_perm_cond (c : S.C) : ∀ (x : Fin (Nat.succ 0).succ),
|
||||
((Sum.elim ![c, c] ![S.τ c, S.τ c] ∘ ⇑finSumFinEquiv.symm) ∘
|
||||
Fin.succAbove 1 ∘ Fin.succAbove 1) x =
|
||||
(![S.τ c, c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := by
|
||||
intro x
|
||||
fin_cases x
|
||||
· rfl
|
||||
· rfl
|
||||
|
||||
/-- The contraction of a metric tensor with its dual via the inner indices gives the unit. -/
|
||||
lemma metricTensor_contr_dual_metricTensor_eq_unit (c : S.C) :
|
||||
{S.metricTensor c | μ ν ⊗ S.metricTensor (S.τ c) | ν ρ}ᵀ.tensor = ({S.unitTensor c | μ ρ}ᵀ |>
|
||||
perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0])
|
||||
(metricTensor_contr_dual_metricTensor_perm_cond c))).tensor := by
|
||||
rw [contr_two_two_inner, contr_metric_braid_unit, Discrete.pairIsoSep_β]
|
||||
change (S.F.map _ ≫ S.F.map _).hom _ = _
|
||||
rw [← S.F.map_comp]
|
||||
rfl
|
||||
|
||||
/-- The contraction of a metric tensor with its dual via the outer indices gives the unit. -/
|
||||
lemma metricTensor_contr_dual_metricTensor_outer_eq_unit (c : S.C) :
|
||||
{S.metricTensor c | ν μ ⊗ S.metricTensor (S.τ c) | ρ ν}ᵀ.tensor = ({S.unitTensor c | μ ρ}ᵀ |>
|
||||
perm (OverColor.equivToHomEq
|
||||
(finMapToEquiv ![1, 0] ![1, 0]) (fun x => by fin_cases x <;> rfl))).tensor := by
|
||||
conv_lhs =>
|
||||
rw [contr_tensor_eq <| prod_tensor_eq_fst <| metricTensor_congr (S.τ_involution c).symm]
|
||||
rw [contr_tensor_eq <| prod_comm _ _ _ _]
|
||||
rw [perm_contr_congr 2 1 (by rfl) (by rfl)]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_right _ _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 1 (by rfl) (by rfl)]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_swap _ _]
|
||||
rw [perm_perm]
|
||||
erw [perm_tensor_eq <| metricTensor_contr_dual_metricTensor_eq_unit _]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| dual_unitTensor_eq_perm _]
|
||||
rw [perm_perm]
|
||||
apply perm_congr _ rfl
|
||||
apply OverColor.Hom.fin_ext
|
||||
intro i
|
||||
simp only [Functor.id_obj, mk_hom, Function.comp_apply, Equiv.refl_symm, Equiv.coe_refl, id_eq,
|
||||
Fin.zero_eta, Matrix.cons_val_zero, List.pmap.eq_1, ContrPair.contrSwapHom,
|
||||
extractOne_homToEquiv, Category.assoc, Hom.hom_comp, Over.comp_left, equivToHomEq_hom_left,
|
||||
Equiv.toFun_as_coe, types_comp_apply, finMapToEquiv_apply, mkIso_hom_hom_left_apply]
|
||||
rw [extractTwo_hom_left_apply]
|
||||
simp only [mk_left, braidPerm_toEquiv, Equiv.symm_trans_apply, Equiv.symm_symm,
|
||||
Equiv.sumComm_symm, Equiv.sumComm_apply, finExtractOnePerm_symm_apply, Equiv.trans_apply,
|
||||
Equiv.symm_apply_apply, Sum.swap_swap, Equiv.apply_symm_apply, finExtractOne_symm_inr_apply,
|
||||
Fin.zero_succAbove, List.pmap.eq_2, Fin.mk_one, List.pmap.eq_1, Matrix.cons_val_one,
|
||||
Matrix.head_cons, extractTwo_hom_left_apply, permProdRight_toEquiv, equivToHomEq_toEquiv,
|
||||
Equiv.sumCongr_refl, Equiv.refl_trans, Equiv.symm_trans_self, Equiv.refl_symm, Equiv.refl_apply,
|
||||
predAboveI_succAbove, finExtractOnePerm_apply]
|
||||
fin_cases i
|
||||
· decide
|
||||
· decide
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
45
HepLean/Tensors/TensorSpecies/RepIso.lean
Normal file
45
HepLean/Tensors/TensorSpecies/RepIso.lean
Normal file
|
@ -0,0 +1,45 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.TensorSpecies.Basic
|
||||
/-!
|
||||
|
||||
# Isomorphism between rep of color `c` and rep of dual color.
|
||||
|
||||
-/
|
||||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
noncomputable section
|
||||
|
||||
namespace TensorSpecies
|
||||
variable (S : TensorSpecies)
|
||||
|
||||
/-- The morphism from `S.FD.obj (Discrete.mk c)` to `S.FD.obj (Discrete.mk (S.τ c))`
|
||||
defined by contracting with the metric. -/
|
||||
def toDualRep (c : S.C) : S.FD.obj (Discrete.mk c) ⟶ S.FD.obj (Discrete.mk (S.τ c)) :=
|
||||
(ρ_ (S.FD.obj (Discrete.mk c))).inv
|
||||
≫ (S.FD.obj { as := c } ◁ (S.metric.app (Discrete.mk (S.τ c))))
|
||||
≫ (α_ (S.FD.obj (Discrete.mk c)) (S.FD.obj (Discrete.mk (S.τ c)))
|
||||
(S.FD.obj (Discrete.mk (S.τ c)))).inv
|
||||
≫ (S.contr.app (Discrete.mk c) ▷ S.FD.obj { as := S.τ c })
|
||||
≫ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom
|
||||
|
||||
/-- The `toDualRep` for equal colors is the same, up-to conjugation by a trivial equivalence. -/
|
||||
lemma toDualRep_congr {c c' : S.C} (h : c = c') : S.toDualRep c = S.FD.map (Discrete.eqToHom h) ≫
|
||||
S.toDualRep c' ≫ S.FD.map (Discrete.eqToHom (congrArg S.τ h.symm)) := by
|
||||
subst h
|
||||
simp only [eqToHom_refl, Discrete.functor_map_id, Category.comp_id, Category.id_comp]
|
||||
|
||||
/-- The morphism from `S.FD.obj (Discrete.mk (S.τ c))` to `S.FD.obj (Discrete.mk c)`
|
||||
defined by contracting with the metric. -/
|
||||
def fromDualRep (c : S.C) : S.FD.obj (Discrete.mk (S.τ c)) ⟶ S.FD.obj (Discrete.mk c) :=
|
||||
S.toDualRep (S.τ c) ≫ S.FD.map (Discrete.eqToHom (S.τ_involution c))
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
110
HepLean/Tensors/TensorSpecies/UnitTensor.lean
Normal file
110
HepLean/Tensors/TensorSpecies/UnitTensor.lean
Normal file
|
@ -0,0 +1,110 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Elab
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Congr
|
||||
/-!
|
||||
|
||||
## Units as tensors
|
||||
|
||||
-/
|
||||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open OverColor
|
||||
open HepLean.Fin
|
||||
open TensorProduct
|
||||
noncomputable section
|
||||
|
||||
namespace TensorSpecies
|
||||
|
||||
/-- The unit of a tensor species in a `PiTensorProduct`. -/
|
||||
def unitTensor (S : TensorSpecies) (c : S.C) : S.F.obj (OverColor.mk ![S.τ c, c]) :=
|
||||
(OverColor.Discrete.pairIsoSep S.FD).hom.hom ((S.unit.app (Discrete.mk c)).hom (1 : S.k))
|
||||
|
||||
variable {S : TensorSpecies}
|
||||
open TensorTree
|
||||
|
||||
/-- The relation between two units of colors which are equal. -/
|
||||
lemma unitTensor_congr {c c' : S.C} (h : c = c') : {S.unitTensor c | μ ν}ᵀ.tensor =
|
||||
(perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by subst h; fin_cases x <;> rfl))
|
||||
{S.unitTensor c' | μ ν}ᵀ).tensor := by
|
||||
subst h
|
||||
change _ = (S.F.map (𝟙 _)).hom (S.unitTensor c)
|
||||
simp
|
||||
|
||||
lemma unitTensor_eq_dual_perm_eq (c : S.C) : ∀ (x : Fin (Nat.succ 0).succ),
|
||||
![S.τ c, c] x = (![S.τ (S.τ c), S.τ c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := fun x => by
|
||||
fin_cases x
|
||||
· rfl
|
||||
· exact (S.τ_involution c).symm
|
||||
|
||||
/-- The unit tensor is equal to a permutation of indices of the dual tensor. -/
|
||||
lemma unitTensor_eq_dual_perm (c : S.C) : {S.unitTensor c | μ ν}ᵀ.tensor =
|
||||
(perm (OverColor.equivToHomEq (finMapToEquiv ![1,0] ![1, 0]) (unitTensor_eq_dual_perm_eq c))
|
||||
{S.unitTensor (S.τ c) | ν μ }ᵀ).tensor := by
|
||||
simp [unitTensor, tensorNode_tensor, perm_tensor]
|
||||
have h1 := S.unit_symm c
|
||||
erw [h1]
|
||||
have hg : (Discrete.pairIsoSep S.FD).hom.hom ∘ₗ (S.FD.obj { as := S.τ c } ◁
|
||||
S.FD.map (Discrete.eqToHom (S.τ_involution c))).hom ∘ₗ
|
||||
(β_ (S.FD.obj { as := S.τ (S.τ c) }) (S.FD.obj { as := S.τ c })).hom.hom =
|
||||
(S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) (unitTensor_eq_dual_perm_eq c))).hom
|
||||
∘ₗ (Discrete.pairIsoSep S.FD).hom.hom := by
|
||||
apply TensorProduct.ext'
|
||||
intro x y
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_whiskerLeft_hom,
|
||||
LinearMap.coe_comp, Function.comp_apply, Fin.isValue]
|
||||
change (Discrete.pairIsoSep S.FD).hom.hom
|
||||
(((y ⊗ₜ[S.k] ((S.FD.map (Discrete.eqToHom _)).hom x)))) =
|
||||
((S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) _)).hom ∘ₗ
|
||||
(Discrete.pairIsoSep S.FD).hom.hom) (x ⊗ₜ[S.k] y)
|
||||
rw [Discrete.pairIsoSep_tmul]
|
||||
conv_rhs =>
|
||||
simp [Discrete.pairIsoSep_tmul]
|
||||
change _ =
|
||||
(S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) _)).hom
|
||||
((Discrete.pairIsoSep S.FD).hom.hom (x ⊗ₜ[S.k] y))
|
||||
rw [Discrete.pairIsoSep_tmul]
|
||||
simp only [F_def, Nat.succ_eq_add_one, Nat.reduceAdd, mk_hom, Functor.id_obj, Fin.isValue]
|
||||
erw [OverColor.lift.map_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
fin_cases i
|
||||
· simp only [Fin.zero_eta, Fin.isValue, Matrix.cons_val_zero, Fin.cases_zero, mk_hom,
|
||||
Nat.succ_eq_add_one, Nat.reduceAdd, lift.discreteFunctorMapEqIso, eqToIso_refl,
|
||||
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· simp only [Fin.mk_one, Fin.isValue, Matrix.cons_val_one, Matrix.head_cons, mk_hom,
|
||||
Nat.succ_eq_add_one, Nat.reduceAdd, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
exact congrFun (congrArg (fun f => f.toFun) hg) _
|
||||
|
||||
lemma dual_unitTensor_eq_perm_eq (c : S.C) : ∀ (x : Fin (Nat.succ 0).succ),
|
||||
![S.τ (S.τ c), S.τ c] x = (![S.τ c, c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := fun x => by
|
||||
fin_cases x
|
||||
· exact (S.τ_involution c)
|
||||
· rfl
|
||||
|
||||
lemma dual_unitTensor_eq_perm (c : S.C) : {S.unitTensor (S.τ c) | ν μ}ᵀ.tensor =
|
||||
(perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) (dual_unitTensor_eq_perm_eq c))
|
||||
{S.unitTensor c | μ ν}ᵀ).tensor := by
|
||||
rw [unitTensor_eq_dual_perm]
|
||||
conv =>
|
||||
lhs
|
||||
rw [perm_tensor_eq <| unitTensor_congr (S.τ_involution c)]
|
||||
rw [perm_perm]
|
||||
refine perm_congr ?_ rfl
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
|
||||
rfl
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
|
@ -3,23 +3,10 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Iso
|
||||
import HepLean.Tensors.OverColor.Discrete
|
||||
import HepLean.Tensors.OverColor.Lift
|
||||
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
|
||||
import HepLean.Tensors.TensorSpecies.Basic
|
||||
/-!
|
||||
|
||||
# Tensor species and trees
|
||||
|
||||
## Tensor species
|
||||
|
||||
- A tensor species is a structure including all of the ingredients needed to define a type of
|
||||
tensor.
|
||||
- Examples of tensor species will include real Lorentz tensors, complex Lorentz tensors, and
|
||||
Einstien tensors.
|
||||
- Tensor species are built upon symmetric monoidal categories.
|
||||
|
||||
## Trees
|
||||
# Tensor trees
|
||||
|
||||
- Tensor trees provide an abstract way to represent tensor expressions.
|
||||
- Their nodes are either tensors or operations between tensors.
|
||||
|
@ -37,523 +24,8 @@ open IndexNotation
|
|||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
/-- The structure of a type of tensors e.g. Lorentz tensors, ordinary tensors
|
||||
(vectors and matrices), complex Lorentz tensors. -/
|
||||
structure TensorSpecies where
|
||||
/-- The commutative ring over which we want to consider the tensors to live in,
|
||||
usually `ℝ` or `ℂ`. -/
|
||||
k : Type
|
||||
/-- An instance of `k` as a commutative ring. -/
|
||||
k_commRing : CommRing k
|
||||
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/
|
||||
G : Type
|
||||
/-- An instance of `G` as a group. -/
|
||||
G_group : Group G
|
||||
/-- The colors of indices e.g. up or down. -/
|
||||
C : Type
|
||||
/-- A functor from `C` to `Rep k G` giving our building block representations.
|
||||
Equivalently a function `C → Re k G`. -/
|
||||
FD : Discrete C ⥤ Rep k G
|
||||
/-- A specification of the dimension of each color in C. This will be used for explicit
|
||||
evaluation of tensors. -/
|
||||
repDim : C → ℕ
|
||||
/-- repDim is not zero for any color. This allows casting of `ℕ` to `Fin (S.repDim c)`. -/
|
||||
repDim_neZero (c : C) : NeZero (repDim c)
|
||||
/-- A basis for each Module, determined by the evaluation map. -/
|
||||
basis : (c : C) → Basis (Fin (repDim c)) k (FD.obj (Discrete.mk c)).V
|
||||
/-- A map from `C` to `C`. An involution. -/
|
||||
τ : C → C
|
||||
/-- The condition that `τ` is an involution. -/
|
||||
τ_involution : Function.Involutive τ
|
||||
/-- The natural transformation describing contraction. -/
|
||||
contr : OverColor.Discrete.pairτ FD τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
|
||||
/-- Contraction is symmetric with respect to duals. -/
|
||||
contr_tmul_symm (c : C) (x : FD.obj (Discrete.mk c))
|
||||
(y : FD.obj (Discrete.mk (τ c))) :
|
||||
(contr.app (Discrete.mk c)).hom (x ⊗ₜ[k] y) = (contr.app (Discrete.mk (τ c))).hom
|
||||
(y ⊗ₜ (FD.map (Discrete.eqToHom (τ_involution c).symm)).hom x)
|
||||
/-- The natural transformation describing the unit. -/
|
||||
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FD τ
|
||||
/-- The unit is symmetric. -/
|
||||
unit_symm (c : C) :
|
||||
((unit.app (Discrete.mk c)).hom (1 : k)) =
|
||||
((FD.obj (Discrete.mk (τ (c)))) ◁
|
||||
(FD.map (Discrete.eqToHom (τ_involution c)))).hom
|
||||
((β_ (FD.obj (Discrete.mk (τ (τ c)))) (FD.obj (Discrete.mk (τ (c))))).hom.hom
|
||||
((unit.app (Discrete.mk (τ c))).hom (1 : k)))
|
||||
/-- Contraction with unit leaves invariant. -/
|
||||
contr_unit (c : C) (x : FD.obj (Discrete.mk (c))) :
|
||||
(λ_ (FD.obj (Discrete.mk (c)))).hom.hom
|
||||
(((contr.app (Discrete.mk c)) ▷ (FD.obj (Discrete.mk (c)))).hom
|
||||
((α_ _ _ (FD.obj (Discrete.mk (c)))).inv.hom
|
||||
(x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x
|
||||
/-- The natural transformation describing the metric. -/
|
||||
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FD
|
||||
/-- On contracting metrics we get back the unit. -/
|
||||
contr_metric (c : C) :
|
||||
(β_ (FD.obj (Discrete.mk c)) (FD.obj (Discrete.mk (τ c)))).hom.hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ (λ_ (FD.obj (Discrete.mk (τ c)))).hom).hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ ((contr.app (Discrete.mk c)) ▷
|
||||
(FD.obj (Discrete.mk (τ c))))).hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ (α_ (FD.obj (Discrete.mk (c)))
|
||||
(FD.obj (Discrete.mk (τ c))) (FD.obj (Discrete.mk (τ c)))).inv).hom
|
||||
((α_ (FD.obj (Discrete.mk (c))) (FD.obj (Discrete.mk (c)))
|
||||
(FD.obj (Discrete.mk (τ c)) ⊗ FD.obj (Discrete.mk (τ c)))).hom.hom
|
||||
((metric.app (Discrete.mk c)).hom (1 : k) ⊗ₜ[k]
|
||||
(metric.app (Discrete.mk (τ c))).hom (1 : k))))))
|
||||
= (unit.app (Discrete.mk c)).hom (1 : k)
|
||||
|
||||
noncomputable section
|
||||
|
||||
namespace TensorSpecies
|
||||
open OverColor
|
||||
|
||||
variable (S : TensorSpecies)
|
||||
|
||||
/-- The field `k` of a TensorSpecies has the instance of a commuative ring. -/
|
||||
instance : CommRing S.k := S.k_commRing
|
||||
|
||||
/-- The field `G` of a TensorSpecies has the instance of a group. -/
|
||||
instance : Group S.G := S.G_group
|
||||
|
||||
/-- The field `repDim` of a TensorSpecies is non-zero for all colors. -/
|
||||
instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c
|
||||
|
||||
/-- The lift of the functor `S.F` to a monoidal functor. -/
|
||||
def F : BraidedFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FD
|
||||
|
||||
/- The definition of `F` as a lemma. -/
|
||||
lemma F_def : F S = (OverColor.lift).obj S.FD := rfl
|
||||
|
||||
lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ}
|
||||
(h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) =
|
||||
S.τ (c ((Hom.toEquiv σ).symm i)) := by
|
||||
have h1 := Hom.toEquiv_comp_apply σ
|
||||
simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1
|
||||
rw [h1, h1]
|
||||
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply]
|
||||
rw [← h]
|
||||
congr
|
||||
simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom,
|
||||
HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk]
|
||||
erw [Equiv.apply_symm_apply]
|
||||
rw [HepLean.Fin.succsAbove_predAboveI]
|
||||
erw [Equiv.apply_symm_apply]
|
||||
simp only [Nat.succ_eq_add_one, ne_eq]
|
||||
erw [Equiv.apply_eq_iff_eq]
|
||||
exact (Fin.succAbove_ne i j).symm
|
||||
|
||||
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
|
||||
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FD`. -/
|
||||
def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
|
||||
(OverColor.Discrete.pairτ S.FD S.τ).obj { as := c i } := by
|
||||
apply (S.F.mapIso
|
||||
(OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
|
||||
apply (S.F.μIso _ _).symm.trans
|
||||
apply tensorIso ?_ ?_
|
||||
· symm
|
||||
apply (OverColor.forgetLiftApp S.FD (c i)).symm.trans
|
||||
apply S.F.mapIso
|
||||
apply OverColor.mkIso
|
||||
funext x
|
||||
fin_cases x
|
||||
rfl
|
||||
· symm
|
||||
apply (OverColor.forgetLiftApp S.FD (S.τ (c i))).symm.trans
|
||||
apply S.F.mapIso
|
||||
apply OverColor.mkIso
|
||||
funext x
|
||||
fin_cases x
|
||||
simp [h]
|
||||
|
||||
lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : S.FD.obj { as := c i })
|
||||
(y : S.FD.obj { as := S.τ (c i) }) :
|
||||
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
|
||||
PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map
|
||||
(eqToHom (by simp [h]))).hom y) := by
|
||||
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
|
||||
Iso.symm_inv, Functor.mapIso_hom, tensor_comp, MonoidalFunctor.μIso_hom, Category.assoc,
|
||||
LaxMonoidalFunctor.μ_natural, Functor.mapIso_inv, Action.comp_hom,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Functor.id_obj, mk_hom,
|
||||
Fin.isValue]
|
||||
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((S.F.μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom
|
||||
((((OverColor.forgetLiftApp S.FD (c i)).inv.hom x) ⊗ₜ[S.k]
|
||||
((OverColor.forgetLiftApp S.FD (S.τ (c i))).inv.hom y))))) = _
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue]
|
||||
erw [OverColor.forgetLiftAppV_symm_apply,
|
||||
OverColor.forgetLiftAppV_symm_apply S.FD (S.τ (c i))]
|
||||
change ((OverColor.lift.obj S.FD).map (OverColor.mkSum
|
||||
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
(((OverColor.lift.obj S.FD).μ (OverColor.mk fun _ => c i)
|
||||
(OverColor.mk fun _ => S.τ (c i))).hom
|
||||
(((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _
|
||||
rw [OverColor.lift.obj_μ_tprod_tmul S.FD]
|
||||
change ((OverColor.lift.obj S.FD).map
|
||||
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FD]
|
||||
change ((OverColor.lift.obj S.FD).map
|
||||
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((PiTensorProduct.tprod S.k _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FD]
|
||||
apply congrArg
|
||||
funext r
|
||||
match r with
|
||||
| Sum.inl 0 =>
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl,
|
||||
Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor]
|
||||
simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
| Sum.inr 0 =>
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl,
|
||||
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv,
|
||||
Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
|
||||
lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : (k : Fin 1 ⊕ Fin 1) → (S.FD.obj
|
||||
{ as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) :
|
||||
(S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) =
|
||||
x (Sum.inl 0) ⊗ₜ[S.k] ((S.FD.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
|
||||
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
|
||||
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
|
||||
(PiTensorProduct.tprod S.k x)
|
||||
· rfl
|
||||
erw [← LinearEquiv.eq_symm_apply]
|
||||
erw [contrFin1Fin1_inv_tmul]
|
||||
congr
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl 0 =>
|
||||
rfl
|
||||
| Sum.inr 0 =>
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
|
||||
Discrete.functor_obj_eq_as]
|
||||
change _ = ((S.FD.map (eqToHom _)) ≫ (S.FD.map (eqToHom _))).hom (x (Sum.inr 0))
|
||||
rw [← Functor.map_comp]
|
||||
simp
|
||||
exact h
|
||||
|
||||
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
|
||||
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
|
||||
def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FD S.τ).obj
|
||||
(Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
|
||||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <| by
|
||||
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
|
||||
lemma contrIso_hom_hom {n : ℕ} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} :
|
||||
(S.contrIso c1 i j h).hom.hom =
|
||||
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
|
||||
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
|
||||
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
|
||||
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗
|
||||
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by
|
||||
rfl
|
||||
|
||||
/-- `contrMap` is a function that takes a natural number `n`, a function `c` from
|
||||
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type
|
||||
`Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism
|
||||
corresponding to the contraction of the `i`th index with the `i.succAbove j` index.
|
||||
--/
|
||||
def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk c) ⟶
|
||||
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(S.contrIso c i j h).hom ≫
|
||||
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
|
||||
(MonoidalCategory.leftUnitor _).hom
|
||||
|
||||
/-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/
|
||||
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
|
||||
|
||||
/-- Casts an element of `(S.F.obj (OverColor.mk c)).V` for `c` a map from `Fin 0` to an
|
||||
element of the field. -/
|
||||
def castFin0ToField {c : Fin 0 → S.C} : (S.F.obj (OverColor.mk c)).V →ₗ[S.k] S.k :=
|
||||
(PiTensorProduct.isEmptyEquiv (Fin 0)).toLinearMap
|
||||
|
||||
lemma castFin0ToField_tprod {c : Fin 0 → S.C}
|
||||
(x : (i : Fin 0) → S.FD.obj (Discrete.mk (c i))) :
|
||||
castFin0ToField S (PiTensorProduct.tprod S.k x) = 1 := by
|
||||
simp only [castFin0ToField, mk_hom, Functor.id_obj, LinearEquiv.coe_coe]
|
||||
erw [PiTensorProduct.isEmptyEquiv_apply_tprod]
|
||||
|
||||
lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : (i : Fin n.succ.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
|
||||
(S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k]
|
||||
(S.FD.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
|
||||
• (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) :
|
||||
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by
|
||||
rw [contrMap, contrIso]
|
||||
simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom,
|
||||
tensorIso_hom, Monoidal.tensorUnit_obj, tensorHom_id,
|
||||
Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_tensorHom_hom, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
|
||||
Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as]
|
||||
change (λ_ ((lift.obj S.FD).obj _)).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)
|
||||
∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) x)))))) = _
|
||||
rw [lift.map_tprod]
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷
|
||||
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso (OverColor.mk
|
||||
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm i_1))))))) = _
|
||||
rw [lift.map_tprod]
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
((lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm i_1)))))))) = _
|
||||
rw [lift.μIso_inv_tprod]
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
((lift.discreteFunctorMapEqIso S.FD _) (x
|
||||
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm
|
||||
(Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _) ((lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv
|
||||
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _
|
||||
rw [TensorProduct.map_tmul]
|
||||
rw [contrFin1Fin1_hom_hom_tprod]
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, mk_hom, Function.comp_apply,
|
||||
Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv,
|
||||
Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply]
|
||||
rw [Action.instMonoidalCategory_leftUnitor_hom_hom]
|
||||
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue,
|
||||
ModuleCat.MonoidalCategory.leftUnitor_hom_apply]
|
||||
congr 1
|
||||
/- The contraction. -/
|
||||
· simp only [Fin.isValue, castToField]
|
||||
congr 2
|
||||
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
(x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue]
|
||||
have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) :
|
||||
(S.FD.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FD.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
subst hbd
|
||||
rfl
|
||||
refine h1' ?_ ?_ ?_
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply]
|
||||
simp [h]
|
||||
/- The tensor. -/
|
||||
· erw [lift.map_tprod]
|
||||
apply congrArg
|
||||
funext d
|
||||
simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
|
||||
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
|
||||
simp only [Nat.succ_eq_add_one]
|
||||
have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d))
|
||||
= (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d
|
||||
have h1' {a b : Fin n.succ.succ} (h : a = b) :
|
||||
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
||||
subst h
|
||||
simp
|
||||
exact h1' h1
|
||||
|
||||
/-!
|
||||
|
||||
## Evalutation of indices.
|
||||
|
||||
-/
|
||||
|
||||
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ`
|
||||
allowing us to undertake evaluation. -/
|
||||
def evalIso {n : ℕ} (c : Fin n.succ → S.C)
|
||||
(i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FD.obj (Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)) :=
|
||||
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractOne i))).trans <|
|
||||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <|
|
||||
tensorIso
|
||||
((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; rfl))).trans
|
||||
(OverColor.forgetLiftApp S.FD (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
|
||||
lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ)
|
||||
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.evalIso c i).hom.hom (PiTensorProduct.tprod S.k x) =
|
||||
x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, F_def, evalIso,
|
||||
Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
|
||||
Action.instMonoidalCategory_tensorHom_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom ⊗
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractOne i)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.map_tprod]
|
||||
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom ⊗
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
|
||||
(((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.map_tprod]
|
||||
change ((TensorProduct.map (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom)
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom))
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
((((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.μIso_inv_tprod]
|
||||
rw [TensorProduct.map_tmul]
|
||||
erw [lift.map_tprod]
|
||||
simp only [Nat.succ_eq_add_one, CategoryStruct.comp, Functor.id_obj,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, Sum.elim_inl, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm,
|
||||
LinearMap.coe_comp, Sum.elim_inr]
|
||||
congr 1
|
||||
· change (forgetLiftApp S.FD (c i)).hom.hom
|
||||
(((lift.obj S.FD).map (mkIso _).hom).hom
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
rw [lift.map_tprod]
|
||||
rw [forgetLiftApp_hom_hom_apply_eq]
|
||||
apply congrArg
|
||||
funext i
|
||||
match i with
|
||||
| (0 : Fin 1) =>
|
||||
simp only [mk_hom, Fin.isValue, Function.comp_apply, lift.discreteFunctorMapEqIso,
|
||||
eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· apply congrArg
|
||||
funext k
|
||||
simp only [lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv,
|
||||
eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
(x ((HepLean.Fin.finExtractOne i).symm ((Sum.inr k)))) = _
|
||||
have h1' {a b : Fin n.succ} (h : a = b) :
|
||||
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
||||
subst h
|
||||
simp
|
||||
refine h1' ?_
|
||||
exact HepLean.Fin.finExtractOne_symm_inr_apply i k
|
||||
|
||||
/-- The linear map giving the coordinate of a vector with respect to the given basis.
|
||||
Important Note: This is not a morphism in the category of representations. In general,
|
||||
it cannot be lifted thereto. -/
|
||||
def evalLinearMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
|
||||
S.FD.obj { as := c i } →ₗ[S.k] S.k where
|
||||
toFun := fun v => (S.basis (c i)).repr v e
|
||||
map_add' := by simp
|
||||
map_smul' := by simp
|
||||
|
||||
/-- The evaluation map, used to evaluate indices of tensors.
|
||||
Important Note: The evaluation map is in general, not equivariant with respect to
|
||||
group actions. It is a morphism in the underlying module category, not the category
|
||||
of representations. -/
|
||||
def evalMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
|
||||
(S.F.obj (OverColor.mk c)).V ⟶ (S.F.obj (OverColor.mk (c ∘ i.succAbove))).V :=
|
||||
(S.evalIso c i).hom.hom ≫ ((Action.forgetMonoidal _ _).μIso _ _).inv
|
||||
≫ ModuleCat.asHom (TensorProduct.map (S.evalLinearMap i e) LinearMap.id) ≫
|
||||
ModuleCat.asHom (TensorProduct.lid S.k _).toLinearMap
|
||||
|
||||
lemma evalMap_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i)))
|
||||
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.evalMap i e) (PiTensorProduct.tprod S.k x) =
|
||||
(((S.basis (c i)).repr (x i) e) : S.k) •
|
||||
(PiTensorProduct.tprod S.k
|
||||
(fun k => x (i.succAbove k)) : S.F.obj (OverColor.mk (c ∘ i.succAbove))) := by
|
||||
rw [evalMap]
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor, Action.forget_obj, Functor.id_obj, mk_hom,
|
||||
Function.comp_apply, ModuleCat.coe_comp]
|
||||
erw [evalIso_tprod]
|
||||
change ((TensorProduct.lid S.k ↑((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove))).V))
|
||||
(((TensorProduct.map (S.evalLinearMap i e) LinearMap.id))
|
||||
(((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FD.obj { as := c i })
|
||||
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)))).inv
|
||||
(x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _
|
||||
simp only [Nat.succ_eq_add_one, Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor,
|
||||
Action.forget_obj, Action.instMonoidalCategory_tensorObj_V, MonoidalFunctor.μIso,
|
||||
Action.forgetMonoidal_toLaxMonoidalFunctor_μ, asIso_inv, IsIso.inv_id, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Functor.id_obj, mk_hom, Function.comp_apply, ModuleCat.id_apply, TensorProduct.map_tmul,
|
||||
LinearMap.id_coe, id_eq, TensorProduct.lid_tmul]
|
||||
rfl
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
/-- A syntax tree for tensor expressions. -/
|
||||
inductive TensorTree (S : TensorSpecies) : {n : ℕ} → (Fin n → S.C) → Type where
|
||||
/-- A general tensor node. -/
|
||||
|
|
|
@ -425,14 +425,7 @@ def getPermutation (l1 l2 : List (TSyntax `indexExpr)) : TermElabM (List (ℕ))
|
|||
(fun x => l1enum.find? (fun y => Lean.TSyntax.getId y.2 = Lean.TSyntax.getId x))
|
||||
return l2''.map fun x => x.1
|
||||
|
||||
/-- Takes two maps `Fin n → Fin n` and returns the equivelance they form. -/
|
||||
def finMapToEquiv (f1 : Fin n → Fin m) (f2 : Fin m → Fin n)
|
||||
(h : ∀ x, f1 (f2 x) = x := by decide)
|
||||
(h' : ∀ x, f2 (f1 x) = x := by decide) : Fin n ≃ Fin m where
|
||||
toFun := f1
|
||||
invFun := f2
|
||||
left_inv := h'
|
||||
right_inv := h
|
||||
open HepLean.Fin
|
||||
|
||||
/-- Given two lists of indices returns the permutation between them based on `finMapToEquiv`. -/
|
||||
def getPermutationSyntax (l1 l2 : List (TSyntax `indexExpr)) : TermElabM Term := do
|
||||
|
|
|
@ -140,7 +140,7 @@ lemma perm_eq_iff_eq_perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|||
apply Hom.ext
|
||||
ext x
|
||||
change (Hom.toEquiv σ) ((Hom.toEquiv σ).symm x) = x
|
||||
simp
|
||||
simp [-OverColor.mk_left]
|
||||
rw [h1]
|
||||
simp
|
||||
|
||||
|
@ -250,6 +250,7 @@ lemma prod_add_both {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|||
|
||||
-/
|
||||
|
||||
/-- The action of a group element can be brought though a scalar multiplication. -/
|
||||
lemma smul_action {n : ℕ} {c : Fin n → S.C} (g : S.G) (a : S.k) (t : TensorTree S c) :
|
||||
(smul a (action g t)).tensor = (action g (smul a t)).tensor := by
|
||||
simp only [smul_tensor, action_tensor, map_smul]
|
||||
|
|
|
@ -29,12 +29,23 @@ variable {S : TensorSpecies} {n n' n2 : ℕ}
|
|||
def permProdLeft := (equivToIso finSumFinEquiv).inv ≫ σ ▷ OverColor.mk c2
|
||||
≫ (equivToIso finSumFinEquiv).hom
|
||||
|
||||
@[simp]
|
||||
lemma permProdLeft_toEquiv : Hom.toEquiv (permProdLeft c2 σ) = finSumFinEquiv.symm.trans
|
||||
(((Hom.toEquiv σ).sumCongr (Equiv.refl (Fin n2))).trans finSumFinEquiv) := by
|
||||
simp [permProdLeft]
|
||||
|
||||
|
||||
/-- The permutation that arises when moving a `perm` node in the right entry through a `prod` node.
|
||||
This permutation is defined using left-whiskering and composition with `finSumFinEquiv`
|
||||
based-isomorphisms. -/
|
||||
def permProdRight := (equivToIso finSumFinEquiv).inv ≫ OverColor.mk c2 ◁ σ
|
||||
≫ (equivToIso finSumFinEquiv).hom
|
||||
|
||||
@[simp]
|
||||
lemma permProdRight_toEquiv : Hom.toEquiv (permProdRight c2 σ) = finSumFinEquiv.symm.trans
|
||||
(((Equiv.refl (Fin n2)).sumCongr (Hom.toEquiv σ)).trans finSumFinEquiv) := by
|
||||
simp [permProdRight]
|
||||
|
||||
/-- When a `prod` acts on a `perm` node in the left entry, the `perm` node can be moved through
|
||||
the `prod` node via right-whiskering. -/
|
||||
theorem prod_perm_left (t : TensorTree S c) (t2 : TensorTree S c2) :
|
||||
|
|
|
@ -31,6 +31,11 @@ def braidPerm : OverColor.mk (Sum.elim c2 c ∘ ⇑finSumFinEquiv.symm) ⟶
|
|||
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
|
||||
≫ (equivToIso finSumFinEquiv).hom
|
||||
|
||||
@[simp]
|
||||
lemma braidPerm_toEquiv : Hom.toEquiv (braidPerm c c2) = finSumFinEquiv.symm.trans
|
||||
((Equiv.sumComm (Fin n2) (Fin n)).trans finSumFinEquiv) := by
|
||||
simp [braidPerm]
|
||||
|
||||
lemma finSumFinEquiv_comp_braidPerm :
|
||||
(equivToIso finSumFinEquiv).hom ≫ braidPerm c c2 =
|
||||
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue