refactor: Lint
This commit is contained in:
parent
3d496fe36c
commit
6544d95515
3 changed files with 35 additions and 21 deletions
|
@ -31,6 +31,7 @@ open Matrix
|
|||
open Complex
|
||||
open ComplexConjugate
|
||||
|
||||
/-- The complex vector space in which the Higgs field takes values. -/
|
||||
abbrev higgsVec := EuclideanSpace ℂ (Fin 2)
|
||||
|
||||
/-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/
|
||||
|
@ -49,6 +50,8 @@ instance : NormedAddCommGroup (Fin 2 → ℂ) := by
|
|||
|
||||
section higgsVec
|
||||
|
||||
/-- The continous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` acheived by
|
||||
casting vectors. -/
|
||||
def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where
|
||||
toFun x := x
|
||||
map_add' x y := by
|
||||
|
@ -59,9 +62,10 @@ def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where
|
|||
lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, higgsVec) 𝓘(ℝ, Fin 2 → ℂ) higgsVecToFin2ℂ :=
|
||||
ContinuousLinearMap.smooth higgsVecToFin2ℂ
|
||||
|
||||
/-- Given an element of `gaugeGroup` the linear automorphism of `higgsVec` it gets taken to. -/
|
||||
@[simps!]
|
||||
noncomputable def higgsRepMap (g : guageGroup) : higgsVec →ₗ[ℂ] higgsVec where
|
||||
toFun S := (g.2 ^ 3) • (g.1.1 *ᵥ S)
|
||||
toFun S := (g.2.2 ^ 3) • (g.2.1.1 *ᵥ S)
|
||||
map_add' S T := by
|
||||
simp [Matrix.mulVec_add, smul_add]
|
||||
rw [Matrix.mulVec_add, smul_add]
|
||||
|
@ -94,6 +98,7 @@ end higgsVec
|
|||
namespace higgsField
|
||||
open Complex Real
|
||||
|
||||
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
|
||||
def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ
|
||||
|
||||
lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, higgsVec) φ.toHiggsVec := by
|
||||
|
@ -128,20 +133,22 @@ lemma comp_im_smooth (φ : higgsField) (i : Fin 2):
|
|||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
|
||||
Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.comp_smooth i)
|
||||
|
||||
/-- Given a `higgsField`, the map `spaceTime → ℝ` obtained by taking the square norm of the
|
||||
higgs vector. -/
|
||||
@[simp]
|
||||
def normSq (φ : higgsField) : spaceTime → ℝ := fun x => ( ‖φ x‖ ^ 2)
|
||||
|
||||
lemma normSq_expand (φ : higgsField) :
|
||||
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
|
||||
funext x
|
||||
simp
|
||||
simp only [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
|
||||
rw [@norm_sq_eq_inner ℂ]
|
||||
simp
|
||||
|
||||
lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) φ.normSq := by
|
||||
rw [normSq_expand]
|
||||
refine Smooth.add ?_ ?_
|
||||
simp
|
||||
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
|
||||
refine Smooth.add ?_ ?_
|
||||
refine Smooth.smul ?_ ?_
|
||||
exact φ.comp_re_smooth 0
|
||||
|
@ -149,7 +156,7 @@ lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ,
|
|||
refine Smooth.smul ?_ ?_
|
||||
exact φ.comp_im_smooth 0
|
||||
exact φ.comp_im_smooth 0
|
||||
simp
|
||||
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
|
||||
refine Smooth.add ?_ ?_
|
||||
refine Smooth.smul ?_ ?_
|
||||
exact φ.comp_re_smooth 1
|
||||
|
@ -164,6 +171,7 @@ lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by
|
|||
lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
|
||||
simp only [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
|
||||
|
||||
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
|
||||
@[simp]
|
||||
def potential (φ : higgsField) (μSq lambda : ℝ ) (x : spaceTime) : ℝ :=
|
||||
- μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x
|
||||
|
@ -176,9 +184,6 @@ lemma potential_smooth (φ : higgsField) (μSq lambda : ℝ ) :
|
|||
(Smooth.smul (Smooth.smul smooth_const φ.normSq_smooth) φ.normSq_smooth)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
|
||||
def isConst (Φ : higgsField) : Prop := ∀ x y, Φ x = Φ y
|
||||
|
||||
|
@ -202,6 +207,7 @@ lemma potential_const (φ : higgsVec) (μSq lambda : ℝ ) :
|
|||
rw [normSq_const]
|
||||
ring_nf
|
||||
|
||||
/-- Given a element `v : ℝ` the `higgsField` `(0, v/√2)`. -/
|
||||
def constStd (v : ℝ) : higgsField := const ![0, v/√2]
|
||||
|
||||
lemma normSq_constStd (v : ℝ) : (constStd v).normSq = fun x => v ^ 2 / 2 := by
|
||||
|
@ -211,13 +217,14 @@ lemma normSq_constStd (v : ℝ) : (constStd v).normSq = fun x => v ^ 2 / 2 := by
|
|||
rw [Fin.sum_univ_two]
|
||||
simp
|
||||
|
||||
def potentialConstStd (μSq lambda v: ℝ) : ℝ := - μSq /2 * v ^ 2 + lambda /4 * v ^ 4
|
||||
/-- The higgs potential as a function of `v : ℝ` when evaluated on a `constStd` field. -/
|
||||
def potentialConstStd (μSq lambda v : ℝ) : ℝ := - μSq /2 * v ^ 2 + lambda /4 * v ^ 4
|
||||
|
||||
lemma potential_constStd (v μSq lambda : ℝ) :
|
||||
(constStd v).potential μSq lambda = fun _ => potentialConstStd μSq lambda v := by
|
||||
unfold potential potentialConstStd
|
||||
rw [normSq_constStd]
|
||||
simp
|
||||
simp only [neg_mul]
|
||||
ring_nf
|
||||
|
||||
lemma smooth_potentialConstStd (μSq lambda : ℝ) :
|
||||
|
@ -236,7 +243,8 @@ lemma deriv_potentialConstStd (μSq lambda v : ℝ) :
|
|||
deriv (fun v => potentialConstStd μSq lambda v) v = - μSq * v + lambda * v ^ 3 := by
|
||||
simp only [potentialConstStd]
|
||||
rw [deriv_add, deriv_mul, deriv_mul, deriv_const, deriv_const, deriv_pow, deriv_pow]
|
||||
simp
|
||||
simp only [zero_mul, Nat.cast_ofNat, Nat.succ_sub_succ_eq_sub, tsub_zero, pow_one, zero_add,
|
||||
neg_mul]
|
||||
ring
|
||||
exact differentiableAt_const _
|
||||
exact differentiableAt_pow _
|
||||
|
@ -278,7 +286,7 @@ lemma potentialConstStd_bounded' (μSq lambda v x : ℝ) (hLam : 0 < lambda) :
|
|||
ring_nf at h4
|
||||
ring_nf
|
||||
exact h4
|
||||
simp
|
||||
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact OrderIso.mulLeft₀.proof_1 lambda hLam
|
||||
|
||||
lemma potentialConstStd_bounded (μSq lambda v : ℝ) (hLam : 0 < lambda) :
|
||||
|
@ -300,7 +308,8 @@ lemma potentialConstStd_vsq_of_eq_bound (μSq lambda v : ℝ) (hLam : 0 < lambda
|
|||
intro h
|
||||
simp [potentialConstStd] at h
|
||||
field_simp at h
|
||||
have h1 : (8 * lambda ^ 2) * v ^ 2 * v ^ 2 + (- 16 * μSq * lambda ) * v ^ 2 + (8 * μSq ^ 2) = 0 := by
|
||||
have h1 : (8 * lambda ^ 2) * v ^ 2 * v ^ 2 + (- 16 * μSq * lambda ) * v ^ 2
|
||||
+ (8 * μSq ^ 2) = 0 := by
|
||||
linear_combination h
|
||||
have hd : discrim (8 * lambda ^ 2) (- 16 * μSq * lambda) (8 * μSq ^ 2) = 0 := by
|
||||
simp [discrim]
|
||||
|
@ -315,7 +324,7 @@ lemma potentialConstStd_vsq_of_eq_bound (μSq lambda v : ℝ) (hLam : 0 < lambda
|
|||
ring_nf
|
||||
rw [← h1]
|
||||
ring
|
||||
simp
|
||||
simp only [ne_eq, mul_eq_zero, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, false_or]
|
||||
exact OrderIso.mulLeft₀.proof_1 lambda hLam
|
||||
intro h
|
||||
simp [potentialConstStd, h]
|
||||
|
@ -345,9 +354,6 @@ lemma potentialConstStd_IsMinOn (μSq lambda v : ℝ) (hLam : 0 < lambda) (hμSq
|
|||
exact potentialConstStd_IsMinOn_of_eq_bound μSq lambda v hLam h
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
lemma potentialConstStd_muSq_le_zero_nonneg (μSq lambda v : ℝ) (hLam : 0 < lambda)
|
||||
(hμSq : μSq ≤ 0) : 0 ≤ potentialConstStd μSq lambda v := by
|
||||
simp [potentialConstStd]
|
||||
|
@ -388,13 +394,13 @@ lemma potentialConstStd_zero_muSq_le_zero (μSq lambda v : ℝ) (hLam : 0 < lamb
|
|||
simpa using h2
|
||||
have h3 : ¬ (0 ≤ 4 * μSq / (2 * lambda)) := by
|
||||
rw [div_nonneg_iff]
|
||||
simp
|
||||
simp only [gt_iff_lt, Nat.ofNat_pos, mul_nonneg_iff_of_pos_left]
|
||||
rw [not_or]
|
||||
apply And.intro
|
||||
simp
|
||||
simp only [not_and, not_le]
|
||||
intro hm
|
||||
exact (hμSqZ (le_antisymm hμSq hm)).elim
|
||||
simp
|
||||
simp only [not_and, not_le, gt_iff_lt, Nat.ofNat_pos, mul_pos_iff_of_pos_left]
|
||||
intro _
|
||||
simp_all only [true_or]
|
||||
rw [← h2] at h3
|
||||
|
@ -424,7 +430,6 @@ lemma potentialConstStd_IsMinOn_muSq_le_zero (μSq lambda v : ℝ) (hLam : 0 < l
|
|||
|
||||
|
||||
|
||||
|
||||
lemma const_isConst (φ : Fin 2 → ℂ) : (const φ).isConst := by
|
||||
intro x _
|
||||
simp [const]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue