refactor: Lint

This commit is contained in:
jstoobysmith 2024-05-06 11:09:37 -04:00
parent 3d496fe36c
commit 6544d95515
3 changed files with 35 additions and 21 deletions

View file

@ -54,3 +54,5 @@ import HepLean.FlavorPhysics.CKMMatrix.Relations
import HepLean.FlavorPhysics.CKMMatrix.Rows import HepLean.FlavorPhysics.CKMMatrix.Rows
import HepLean.FlavorPhysics.CKMMatrix.StandardParameterization.Basic import HepLean.FlavorPhysics.CKMMatrix.StandardParameterization.Basic
import HepLean.FlavorPhysics.CKMMatrix.StandardParameterization.StandardParameters import HepLean.FlavorPhysics.CKMMatrix.StandardParameterization.StandardParameters
import HepLean.StandardModel.Basic
import HepLean.StandardModel.HiggsField

View file

@ -8,7 +8,12 @@ import Mathlib.Geometry.Manifold.VectorBundle.Basic
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
import Mathlib.Geometry.Manifold.Instances.Real import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.RepresentationTheory.Basic import Mathlib.RepresentationTheory.Basic
/-!
# The Standard Model
This file defines the basic properties of the standard model in particle physics.
-/
universe v u universe v u
namespace StandardModel namespace StandardModel
@ -20,6 +25,8 @@ open ComplexConjugate
/-- The space-time (TODO: Change to Minkowski.) -/ /-- The space-time (TODO: Change to Minkowski.) -/
abbrev spaceTime := EuclideanSpace (Fin 4) abbrev spaceTime := EuclideanSpace (Fin 4)
abbrev guageGroup : Type := specialUnitaryGroup (Fin 2) × unitary /-- The global gauge group of the standard model. -/
abbrev guageGroup : Type := specialUnitaryGroup (Fin 3) ×
specialUnitaryGroup (Fin 2) × unitary
end StandardModel end StandardModel

View file

@ -31,6 +31,7 @@ open Matrix
open Complex open Complex
open ComplexConjugate open ComplexConjugate
/-- The complex vector space in which the Higgs field takes values. -/
abbrev higgsVec := EuclideanSpace (Fin 2) abbrev higgsVec := EuclideanSpace (Fin 2)
/-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/ /-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/
@ -49,6 +50,8 @@ instance : NormedAddCommGroup (Fin 2 → ) := by
section higgsVec section higgsVec
/-- The continous linear map from the vector space `higgsVec` to `(Fin 2 → )` acheived by
casting vectors. -/
def higgsVecToFin2 : higgsVec →L[] (Fin 2 → ) where def higgsVecToFin2 : higgsVec →L[] (Fin 2 → ) where
toFun x := x toFun x := x
map_add' x y := by map_add' x y := by
@ -59,9 +62,10 @@ def higgsVecToFin2 : higgsVec →L[] (Fin 2 → ) where
lemma smooth_higgsVecToFin2 : Smooth 𝓘(, higgsVec) 𝓘(, Fin 2 → ) higgsVecToFin2 := lemma smooth_higgsVecToFin2 : Smooth 𝓘(, higgsVec) 𝓘(, Fin 2 → ) higgsVecToFin2 :=
ContinuousLinearMap.smooth higgsVecToFin2 ContinuousLinearMap.smooth higgsVecToFin2
/-- Given an element of `gaugeGroup` the linear automorphism of `higgsVec` it gets taken to. -/
@[simps!] @[simps!]
noncomputable def higgsRepMap (g : guageGroup) : higgsVec →ₗ[] higgsVec where noncomputable def higgsRepMap (g : guageGroup) : higgsVec →ₗ[] higgsVec where
toFun S := (g.2 ^ 3) • (g.1.1 *ᵥ S) toFun S := (g.2.2 ^ 3) • (g.2.1.1 *ᵥ S)
map_add' S T := by map_add' S T := by
simp [Matrix.mulVec_add, smul_add] simp [Matrix.mulVec_add, smul_add]
rw [Matrix.mulVec_add, smul_add] rw [Matrix.mulVec_add, smul_add]
@ -94,6 +98,7 @@ end higgsVec
namespace higgsField namespace higgsField
open Complex Real open Complex Real
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ
lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, higgsVec) φ.toHiggsVec := by lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, higgsVec) φ.toHiggsVec := by
@ -128,20 +133,22 @@ lemma comp_im_smooth (φ : higgsField) (i : Fin 2):
Smooth 𝓘(, spaceTime) 𝓘(, ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) := Smooth 𝓘(, spaceTime) 𝓘(, ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.comp_smooth i) Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.comp_smooth i)
/-- Given a `higgsField`, the map `spaceTime → ` obtained by taking the square norm of the
higgs vector. -/
@[simp] @[simp]
def normSq (φ : higgsField) : spaceTime → := fun x => ( ‖φ x‖ ^ 2) def normSq (φ : higgsField) : spaceTime → := fun x => ( ‖φ x‖ ^ 2)
lemma normSq_expand (φ : higgsField) : lemma normSq_expand (φ : higgsField) :
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
funext x funext x
simp simp only [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
rw [@norm_sq_eq_inner ] rw [@norm_sq_eq_inner ]
simp simp
lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, ) φ.normSq := by lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(, ) φ.normSq := by
rw [normSq_expand] rw [normSq_expand]
refine Smooth.add ?_ ?_ refine Smooth.add ?_ ?_
simp simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
refine Smooth.add ?_ ?_ refine Smooth.add ?_ ?_
refine Smooth.smul ?_ ?_ refine Smooth.smul ?_ ?_
exact φ.comp_re_smooth 0 exact φ.comp_re_smooth 0
@ -149,7 +156,7 @@ lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(, spaceTime) 𝓘(,
refine Smooth.smul ?_ ?_ refine Smooth.smul ?_ ?_
exact φ.comp_im_smooth 0 exact φ.comp_im_smooth 0
exact φ.comp_im_smooth 0 exact φ.comp_im_smooth 0
simp simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
refine Smooth.add ?_ ?_ refine Smooth.add ?_ ?_
refine Smooth.smul ?_ ?_ refine Smooth.smul ?_ ?_
exact φ.comp_re_smooth 1 exact φ.comp_re_smooth 1
@ -164,6 +171,7 @@ lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by
lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
simp only [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero] simp only [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
@[simp] @[simp]
def potential (φ : higgsField) (μSq lambda : ) (x : spaceTime) : := def potential (φ : higgsField) (μSq lambda : ) (x : spaceTime) : :=
- μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x - μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x
@ -176,9 +184,6 @@ lemma potential_smooth (φ : higgsField) (μSq lambda : ) :
(Smooth.smul (Smooth.smul smooth_const φ.normSq_smooth) φ.normSq_smooth) (Smooth.smul (Smooth.smul smooth_const φ.normSq_smooth) φ.normSq_smooth)
/-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/ /-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
def isConst (Φ : higgsField) : Prop := ∀ x y, Φ x = Φ y def isConst (Φ : higgsField) : Prop := ∀ x y, Φ x = Φ y
@ -202,6 +207,7 @@ lemma potential_const (φ : higgsVec) (μSq lambda : ) :
rw [normSq_const] rw [normSq_const]
ring_nf ring_nf
/-- Given a element `v : ` the `higgsField` `(0, v/√2)`. -/
def constStd (v : ) : higgsField := const ![0, v/√2] def constStd (v : ) : higgsField := const ![0, v/√2]
lemma normSq_constStd (v : ) : (constStd v).normSq = fun x => v ^ 2 / 2 := by lemma normSq_constStd (v : ) : (constStd v).normSq = fun x => v ^ 2 / 2 := by
@ -211,13 +217,14 @@ lemma normSq_constStd (v : ) : (constStd v).normSq = fun x => v ^ 2 / 2 := by
rw [Fin.sum_univ_two] rw [Fin.sum_univ_two]
simp simp
def potentialConstStd (μSq lambda v: ) : := - μSq /2 * v ^ 2 + lambda /4 * v ^ 4 /-- The higgs potential as a function of `v : ` when evaluated on a `constStd` field. -/
def potentialConstStd (μSq lambda v : ) : := - μSq /2 * v ^ 2 + lambda /4 * v ^ 4
lemma potential_constStd (v μSq lambda : ) : lemma potential_constStd (v μSq lambda : ) :
(constStd v).potential μSq lambda = fun _ => potentialConstStd μSq lambda v := by (constStd v).potential μSq lambda = fun _ => potentialConstStd μSq lambda v := by
unfold potential potentialConstStd unfold potential potentialConstStd
rw [normSq_constStd] rw [normSq_constStd]
simp simp only [neg_mul]
ring_nf ring_nf
lemma smooth_potentialConstStd (μSq lambda : ) : lemma smooth_potentialConstStd (μSq lambda : ) :
@ -236,7 +243,8 @@ lemma deriv_potentialConstStd (μSq lambda v : ) :
deriv (fun v => potentialConstStd μSq lambda v) v = - μSq * v + lambda * v ^ 3 := by deriv (fun v => potentialConstStd μSq lambda v) v = - μSq * v + lambda * v ^ 3 := by
simp only [potentialConstStd] simp only [potentialConstStd]
rw [deriv_add, deriv_mul, deriv_mul, deriv_const, deriv_const, deriv_pow, deriv_pow] rw [deriv_add, deriv_mul, deriv_mul, deriv_const, deriv_const, deriv_pow, deriv_pow]
simp simp only [zero_mul, Nat.cast_ofNat, Nat.succ_sub_succ_eq_sub, tsub_zero, pow_one, zero_add,
neg_mul]
ring ring
exact differentiableAt_const _ exact differentiableAt_const _
exact differentiableAt_pow _ exact differentiableAt_pow _
@ -278,7 +286,7 @@ lemma potentialConstStd_bounded' (μSq lambda v x : ) (hLam : 0 < lambda) :
ring_nf at h4 ring_nf at h4
ring_nf ring_nf
exact h4 exact h4
simp simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
exact OrderIso.mulLeft₀.proof_1 lambda hLam exact OrderIso.mulLeft₀.proof_1 lambda hLam
lemma potentialConstStd_bounded (μSq lambda v : ) (hLam : 0 < lambda) : lemma potentialConstStd_bounded (μSq lambda v : ) (hLam : 0 < lambda) :
@ -300,7 +308,8 @@ lemma potentialConstStd_vsq_of_eq_bound (μSq lambda v : ) (hLam : 0 < lambda
intro h intro h
simp [potentialConstStd] at h simp [potentialConstStd] at h
field_simp at h field_simp at h
have h1 : (8 * lambda ^ 2) * v ^ 2 * v ^ 2 + (- 16 * μSq * lambda ) * v ^ 2 + (8 * μSq ^ 2) = 0 := by have h1 : (8 * lambda ^ 2) * v ^ 2 * v ^ 2 + (- 16 * μSq * lambda ) * v ^ 2
+ (8 * μSq ^ 2) = 0 := by
linear_combination h linear_combination h
have hd : discrim (8 * lambda ^ 2) (- 16 * μSq * lambda) (8 * μSq ^ 2) = 0 := by have hd : discrim (8 * lambda ^ 2) (- 16 * μSq * lambda) (8 * μSq ^ 2) = 0 := by
simp [discrim] simp [discrim]
@ -315,7 +324,7 @@ lemma potentialConstStd_vsq_of_eq_bound (μSq lambda v : ) (hLam : 0 < lambda
ring_nf ring_nf
rw [← h1] rw [← h1]
ring ring
simp simp only [ne_eq, mul_eq_zero, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, false_or]
exact OrderIso.mulLeft₀.proof_1 lambda hLam exact OrderIso.mulLeft₀.proof_1 lambda hLam
intro h intro h
simp [potentialConstStd, h] simp [potentialConstStd, h]
@ -345,9 +354,6 @@ lemma potentialConstStd_IsMinOn (μSq lambda v : ) (hLam : 0 < lambda) (hμSq
exact potentialConstStd_IsMinOn_of_eq_bound μSq lambda v hLam h exact potentialConstStd_IsMinOn_of_eq_bound μSq lambda v hLam h
lemma potentialConstStd_muSq_le_zero_nonneg (μSq lambda v : ) (hLam : 0 < lambda) lemma potentialConstStd_muSq_le_zero_nonneg (μSq lambda v : ) (hLam : 0 < lambda)
(hμSq : μSq ≤ 0) : 0 ≤ potentialConstStd μSq lambda v := by (hμSq : μSq ≤ 0) : 0 ≤ potentialConstStd μSq lambda v := by
simp [potentialConstStd] simp [potentialConstStd]
@ -388,13 +394,13 @@ lemma potentialConstStd_zero_muSq_le_zero (μSq lambda v : ) (hLam : 0 < lamb
simpa using h2 simpa using h2
have h3 : ¬ (0 ≤ 4 * μSq / (2 * lambda)) := by have h3 : ¬ (0 ≤ 4 * μSq / (2 * lambda)) := by
rw [div_nonneg_iff] rw [div_nonneg_iff]
simp simp only [gt_iff_lt, Nat.ofNat_pos, mul_nonneg_iff_of_pos_left]
rw [not_or] rw [not_or]
apply And.intro apply And.intro
simp simp only [not_and, not_le]
intro hm intro hm
exact (hμSqZ (le_antisymm hμSq hm)).elim exact (hμSqZ (le_antisymm hμSq hm)).elim
simp simp only [not_and, not_le, gt_iff_lt, Nat.ofNat_pos, mul_pos_iff_of_pos_left]
intro _ intro _
simp_all only [true_or] simp_all only [true_or]
rw [← h2] at h3 rw [← h2] at h3
@ -424,7 +430,6 @@ lemma potentialConstStd_IsMinOn_muSq_le_zero (μSq lambda v : ) (hLam : 0 < l
lemma const_isConst (φ : Fin 2 → ) : (const φ).isConst := by lemma const_isConst (φ : Fin 2 → ) : (const φ).isConst := by
intro x _ intro x _
simp [const] simp [const]