chore: bump toolchain to v4.15.0
#281 adapt code to v4.15.0 and fix long heartbeats, e.g., toDualRep_apply_eq_contrOneTwoLeft. --------- Co-authored-by: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com>
This commit is contained in:
parent
6e31281a5b
commit
656a3e422f
49 changed files with 484 additions and 472 deletions
|
@ -17,6 +17,7 @@ import Mathlib.Tactic.FieldSimp
|
|||
import Mathlib.Tactic.Linarith
|
||||
import Mathlib.NumberTheory.FLT.Basic
|
||||
import Mathlib.Algebra.QuadraticDiscriminant
|
||||
import Mathlib.Tactic.LinearCombination'
|
||||
/-!
|
||||
DO NOT USE THIS FILE AS AN IMPORT.
|
||||
|
||||
|
@ -81,7 +82,7 @@ def mk₂ (f : V × V → ℚ) (map_smul : ∀ a S T, f (a • S, T) = a * f (S,
|
|||
intro T1 T2
|
||||
simp only
|
||||
rw [swap, map_add]
|
||||
exact Mathlib.Tactic.LinearCombination.add_pf (swap T1 S) (swap T2 S)
|
||||
exact Mathlib.Tactic.LinearCombination'.add_pf (swap T1 S) (swap T2 S)
|
||||
map_smul' := by
|
||||
intro a T
|
||||
simp only [eq_ratCast, Rat.cast_eq_id, id_eq, smul_eq_mul]
|
||||
|
@ -625,7 +626,6 @@ def bijection : linearParameters ≃ (SMNoGrav 1).LinSols where
|
|||
rw [asLinear_val]
|
||||
funext j
|
||||
have hj : j = (0 : Fin 1) := by
|
||||
simp only [Fin.isValue]
|
||||
ext
|
||||
simp
|
||||
subst hj
|
||||
|
@ -784,13 +784,13 @@ lemma cubic_v_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.
|
|||
have h' : (S.w + 1) * (1 * S.w * S.w + (-1) * S.w + 1) = 0 := by
|
||||
ring_nf
|
||||
exact add_eq_zero_iff_neg_eq.mpr (id (Eq.symm h))
|
||||
have h'' : (1 * S.w * S.w + (-1) * S.w + 1) ≠ 0 := by
|
||||
have h'' : (1 * (S.w * S.w) + (-1) * S.w + 1) ≠ 0 := by
|
||||
refine quadratic_ne_zero_of_discrim_ne_sq ?_ S.w
|
||||
intro s
|
||||
by_contra hn
|
||||
have h : s ^ 2 < 0 := by
|
||||
rw [← hn]
|
||||
rfl
|
||||
decide +kernel
|
||||
nlinarith
|
||||
simp_all
|
||||
exact eq_neg_of_add_eq_zero_left h'
|
||||
|
@ -802,13 +802,13 @@ lemma cube_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.v
|
|||
have h' : (S.v + 1) * (1 * S.v * S.v + (-1) * S.v + 1) = 0 := by
|
||||
ring_nf
|
||||
exact add_eq_zero_iff_neg_eq.mpr (id (Eq.symm h))
|
||||
have h'' : (1 * S.v * S.v + (-1) * S.v + 1) ≠ 0 := by
|
||||
have h'' : (1 * (S.v * S.v) + (-1) * S.v + 1) ≠ 0 := by
|
||||
refine quadratic_ne_zero_of_discrim_ne_sq ?_ S.v
|
||||
intro s
|
||||
by_contra hn
|
||||
have h : s ^ 2 < 0 := by
|
||||
rw [← hn]
|
||||
rfl
|
||||
decide +kernel
|
||||
nlinarith
|
||||
simp_all
|
||||
exact eq_neg_of_add_eq_zero_left h'
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue