chore: bump toolchain to v4.15.0
#281 adapt code to v4.15.0 and fix long heartbeats, e.g., toDualRep_apply_eq_contrOneTwoLeft. --------- Co-authored-by: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com>
This commit is contained in:
parent
6e31281a5b
commit
656a3e422f
49 changed files with 484 additions and 472 deletions
|
@ -58,22 +58,22 @@ lemma unitTensor_eq_dual_perm (c : S.C) : {S.unitTensor c | μ ν}ᵀ.tensor =
|
|||
Action.instMonoidalCategory_tensorUnit_V, tensorNode_tensor, Fin.isValue, perm_tensor]
|
||||
have h1 := S.unit_symm c
|
||||
erw [h1]
|
||||
have hg : (Discrete.pairIsoSep S.FD).hom.hom ∘ₗ (S.FD.obj { as := S.τ c } ◁
|
||||
S.FD.map (Discrete.eqToHom (S.τ_involution c))).hom ∘ₗ
|
||||
(β_ (S.FD.obj { as := S.τ (S.τ c) }) (S.FD.obj { as := S.τ c })).hom.hom =
|
||||
have hg : (Discrete.pairIsoSep S.FD).hom.hom.hom ∘ₗ (S.FD.obj { as := S.τ c } ◁
|
||||
S.FD.map (Discrete.eqToHom (S.τ_involution c))).hom.hom ∘ₗ
|
||||
(β_ (S.FD.obj { as := S.τ (S.τ c) }) (S.FD.obj { as := S.τ c })).hom.hom.hom =
|
||||
(S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0])
|
||||
(fun x => match x with | 0 => by rfl | 1 => (S.τ_involution c).symm))).hom
|
||||
∘ₗ (Discrete.pairIsoSep S.FD).hom.hom := by
|
||||
(fun x => match x with | 0 => by rfl | 1 => (S.τ_involution c).symm))).hom.hom
|
||||
∘ₗ (Discrete.pairIsoSep S.FD).hom.hom.hom := by
|
||||
apply TensorProduct.ext'
|
||||
intro x y
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_whiskerLeft_hom,
|
||||
LinearMap.coe_comp, Function.comp_apply, Fin.isValue]
|
||||
change (Discrete.pairIsoSep S.FD).hom.hom
|
||||
change (Discrete.pairIsoSep S.FD).hom.hom.hom
|
||||
(((y ⊗ₜ[S.k] ((S.FD.map (Discrete.eqToHom _)).hom x)))) =
|
||||
((S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) _)).hom ∘ₗ
|
||||
(Discrete.pairIsoSep S.FD).hom.hom) (x ⊗ₜ[S.k] y)
|
||||
((S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) _)).hom.hom ∘ₗ
|
||||
(Discrete.pairIsoSep S.FD).hom.hom.hom) (x ⊗ₜ[S.k] y)
|
||||
rw [Discrete.pairIsoSep_tmul]
|
||||
conv_rhs =>
|
||||
simp [Discrete.pairIsoSep_tmul]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue