Update TargetSpace.lean
This commit is contained in:
parent
503fd41712
commit
665289854a
1 changed files with 6 additions and 6 deletions
|
@ -42,7 +42,7 @@ abbrev higgsVec := EuclideanSpace ℂ (Fin 2)
|
|||
|
||||
section higgsVec
|
||||
|
||||
/-- The continous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` acheived by
|
||||
/-- The continuous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` achieved by
|
||||
casting vectors. -/
|
||||
def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where
|
||||
toFun x := x
|
||||
|
@ -69,7 +69,7 @@ noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) ℂ whe
|
|||
map_one' := by
|
||||
simp only [Prod.snd_one, _root_.map_one, Prod.fst_one, mul_one]
|
||||
|
||||
/-- An orthonomral basis of higgsVec. -/
|
||||
/-- An orthonormal basis of higgsVec. -/
|
||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ higgsVec :=
|
||||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||
|
||||
|
@ -306,8 +306,8 @@ lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : ℝ} (hμSq : μSq ≤ 0) :
|
|||
exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ h
|
||||
|
||||
end potentialProp
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the fst component of the
|
||||
vector to zero, and the snd componenet to a real -/
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||||
vector to zero, and the second component to a real -/
|
||||
def rotateMatrix (φ : higgsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
![![φ 1 /‖φ‖ , - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖ , conj (φ 1) / ‖φ‖] ]
|
||||
|
||||
|
@ -353,8 +353,8 @@ lemma rotateMatrix_specialUnitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
|||
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ :=
|
||||
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
|
||||
|
||||
/-- Given a Higgs vector, an element of the gauge group which puts the fst component of the
|
||||
vector to zero, and the snd componenet to a real -/
|
||||
/-- Given a Higgs vector, an element of the gauge group which puts the first component of the
|
||||
vector to zero, and the second component to a real -/
|
||||
def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : gaugeGroup :=
|
||||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue