refactor: Simplify some notation

This commit is contained in:
jstoobysmith 2025-01-24 05:19:04 +00:00
parent 7d053695dd
commit 6701ee7b37
8 changed files with 106 additions and 111 deletions

View file

@ -27,20 +27,20 @@ open FieldStatistic
/--
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
We have (roughly) `N(c.insertList φ φs i none).uncontractedList = s • N(φ * c.uncontractedList)`
We have (roughly) `N(c.insertList φ i none).uncontractedList = s • N(φ * c.uncontractedList)`
Where `s` is the exchange sign for `φ` and the uncontracted fields in `φ₀φ₁…φᵢ`.
-/
lemma insertList_none_normalOrder (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (c : WickContraction φs.length) :
𝓞.crAnF (normalOrder (ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ φs i none).uncontractedList)))
𝓞.crAnF (𝓝(ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ i none).uncontractedList)))
= 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, c.uncontracted.filter (fun x => i.succAbove x < i)⟩) •
𝓞.crAnF (normalOrder (ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ none))) := by
𝓞.crAnF (𝓝(ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ none))) := by
simp only [Nat.succ_eq_add_one, instCommGroup.eq_1, optionEraseZ]
rw [crAnF_ofState_normalOrder_insert φ (c.uncontractedList.map φs.get)
⟨(c.uncontractedListOrderPos i), by simp⟩, smul_smul]
trans (1 : ) • 𝓞.crAnF (normalOrder (ofStateList
(List.map (List.insertIdx (↑i) φ φs).get (insertList φ φs c i none).uncontractedList)))
trans (1 : ) • 𝓞.crAnF (𝓝(ofStateList
(List.map (List.insertIdx (↑i) φ φs).get (insertList φ c i none).uncontractedList)))
· simp
congr 1
simp only [instCommGroup.eq_1]
@ -98,16 +98,16 @@ lemma insertList_none_normalOrder (φ : 𝓕.States) (φs : List 𝓕.States)
/--
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
We have (roughly) `N(c.insertList φ φs i k).uncontractedList`
We have (roughly) `N(c.insertList φ i k).uncontractedList`
is equal to `N((c.uncontractedList).eraseIdx k')`
where `k'` is the position in `c.uncontractedList` corresponding to `k`.
-/
lemma insertList_some_normalOrder (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (c : WickContraction φs.length) (k : c.uncontracted) :
𝓞.crAnF (normalOrder (ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ φs i (some k)).uncontractedList)))
= 𝓞.crAnF (normalOrder (ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ
((uncontractedStatesEquiv φs c) k)))) := by
𝓞.crAnF 𝓝(ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ i (some k)).uncontractedList))
= 𝓞.crAnF 𝓝(ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ
((uncontractedStatesEquiv φs c) k))) := by
simp only [Nat.succ_eq_add_one, insertList, optionEraseZ, uncontractedStatesEquiv,
Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply,
Fin.coe_cast]
@ -121,17 +121,17 @@ lemma insertList_some_normalOrder (φ : 𝓕.States) (φs : List 𝓕.States)
/--
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
This lemma states that `(c.sign • c.timeContract 𝓞) * N(c.uncontracted)`
for `c` equal to `c.insertList φ φs i none` is equal to that for just `c`
for `c` equal to `c.insertList φ i none` is equal to that for just `c`
mulitiplied by the exchange sign of `φ` and `φ₀φ₁…φᵢ₋₁`.
-/
lemma sign_timeContract_normalOrder_insertList_none (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (c : WickContraction φs.length) :
(c.insertList φ φs i none).sign • (c.insertList φ φs i none).timeContract 𝓞
* 𝓞.crAnF (normalOrder (ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ φs i none).uncontractedList))) =
(c.insertList φ i none).sign • (c.insertList φ i none).timeContract 𝓞
* 𝓞.crAnF 𝓝(ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ i none).uncontractedList)) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun k => i.succAbove k < i))⟩)
• (c.sign • c.timeContract 𝓞 * 𝓞.crAnF (normalOrder
(ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ none)))) := by
• (c.sign • c.timeContract 𝓞 *
𝓞.crAnF 𝓝(ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ none))) := by
by_cases hg : GradingCompliant φs c
· rw [insertList_none_normalOrder, sign_insert_none]
simp only [Nat.succ_eq_add_one, timeContract_insertList_none, instCommGroup.eq_1,
@ -171,21 +171,21 @@ lemma sign_timeContract_normalOrder_insertList_none (φ : 𝓕.States) (φs : Li
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
This lemma states that
`(c.sign • c.timeContract 𝓞) * N(c.uncontracted)`
for `c` equal to `c.insertList φ φs i (some k)` is equal to that for just `c`
for `c` equal to `c.insertList φ i (some k)` is equal to that for just `c`
mulitiplied by the exchange sign of `φ` and `φ₀φ₁…φᵢ₋₁`.
-/
lemma sign_timeContract_normalOrder_insertList_some (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (c : WickContraction φs.length) (k : c.uncontracted)
(hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
(hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬ timeOrderRel φs[k] φ) :
(c.insertList φ φs i (some k)).sign • (c.insertList φ φs i (some k)).timeContract 𝓞
* 𝓞.crAnF (normalOrder (ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ φs i (some k)).uncontractedList))) =
(c.insertList φ i (some k)).sign • (c.insertList φ i (some k)).timeContract 𝓞
* 𝓞.crAnF 𝓝(ofStateList (List.map (φs.insertIdx i φ).get
(c.insertList φ i (some k)).uncontractedList)) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩)
• (c.sign • (𝓞.contractStateAtIndex φ (List.map φs.get c.uncontractedList)
((uncontractedStatesEquiv φs c) (some k)) * c.timeContract 𝓞)
* 𝓞.crAnF (normalOrder (ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ
((uncontractedStatesEquiv φs c) k))))) := by
* 𝓞.crAnF 𝓝(ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ
((uncontractedStatesEquiv φs c) k)))) := by
by_cases hg : GradingCompliant φs c ∧ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[k.1])
· by_cases hk : i.succAbove k < i
· rw [WickContraction.timeConract_insertList_some_eq_mul_contractStateAtIndex_not_lt]
@ -244,19 +244,19 @@ This lemma states that
`(c.sign • c.timeContract 𝓞) * N(c.uncontracted)`
is equal to the sum of
`(c'.sign • c'.timeContract 𝓞) * N(c'.uncontracted)`
for all `c' = (c.insertList φ φs i k)` for `k : Option (c.uncontracted)`, multiplied by
for all `c' = (c.insertList φ i k)` for `k : Option (c.uncontracted)`, multiplied by
the exchange sign of `φ` and `φ₀φ₁…φᵢ₋₁`.
-/
lemma mul_sum_contractions (φ : 𝓕.States) (φs : List 𝓕.States) (i : Fin φs.length.succ)
(c : WickContraction φs.length) (hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
(hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬timeOrderRel φs[k] φ) :
(c.sign • c.timeContract 𝓞) * 𝓞.crAnF ((CrAnAlgebra.ofState φ) *
normalOrder (ofStateList (c.uncontractedList.map φs.get))) =
𝓝(ofStateList (c.uncontractedList.map φs.get))) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩) •
∑ (k : Option (c.uncontracted)),
((c.insertList φ φs i k).sign • (c.insertList φ φs i k).timeContract 𝓞
* 𝓞.crAnF (normalOrder
(ofStateList ((c.insertList φ φs i k).uncontractedList.map (φs.insertIdx i φ).get)))) := by
((c.insertList φ i k).sign • (c.insertList φ i k).timeContract 𝓞
* 𝓞.crAnF (𝓝(ofStateList
((c.insertList φ i k).uncontractedList.map (φs.insertIdx i φ).get)))) := by
rw [crAnF_ofState_mul_normalOrder_ofStatesList_eq_sum, Finset.mul_sum,
uncontractedStatesEquiv_list_sum, Finset.smul_sum]
simp only [instCommGroup.eq_1, Nat.succ_eq_add_one]
@ -287,9 +287,9 @@ lemma mul_sum_contractions (φ : 𝓕.States) (φs : List 𝓕.States) (i : Fin
lemma wicks_theorem_congr {φs φs' : List 𝓕.States} (h : φs = φs') :
∑ (c : WickContraction φs.length), (c.sign • c.timeContract 𝓞) *
𝓞.crAnF (normalOrder (ofStateList (c.uncontractedList.map φs.get)))
𝓞.crAnF 𝓝(ofStateList (c.uncontractedList.map φs.get))
= ∑ (c : WickContraction φs'.length), (c.sign • c.timeContract 𝓞) *
𝓞.crAnF (normalOrder (ofStateList (c.uncontractedList.map φs'.get))) := by
𝓞.crAnF 𝓝(ofStateList (c.uncontractedList.map φs'.get)) := by
subst h
simp
@ -303,7 +303,7 @@ lemma wicks_theorem_congr {φs φs' : List 𝓕.States} (h : φs = φs') :
lemma wicks_theorem_nil :
𝓞.crAnF (ofStateAlgebra (timeOrder (ofList []))) = ∑ (c : WickContraction [].length),
(c.sign [] • c.timeContract 𝓞) *
𝓞.crAnF (normalOrder (ofStateList (c.uncontractedList.map [].get))) := by
𝓞.crAnF 𝓝(ofStateList (c.uncontractedList.map [].get)) := by
rw [timeOrder_ofList_nil]
simp only [map_one, List.length_nil, Algebra.smul_mul_assoc]
rw [sum_WickContraction_nil, nil_zero_uncontractedList]
@ -330,7 +330,7 @@ remark wicks_theorem_context := "
-/
theorem wicks_theorem : (φs : List 𝓕.States) → 𝓞.crAnF (ofStateAlgebra (timeOrder (ofList φs))) =
∑ (c : WickContraction φs.length), (c.sign φs • c.timeContract 𝓞) *
𝓞.crAnF (normalOrder (ofStateList (c.uncontractedList.map φs.get)))
𝓞.crAnF 𝓝(ofStateList (c.uncontractedList.map φs.get))
| [] => wicks_theorem_nil
| φ :: φs => by
have ih := wicks_theorem (eraseMaxTimeField φ φs)
@ -351,13 +351,12 @@ theorem wicks_theorem : (φs : List 𝓕.States) → 𝓞.crAnF (ofStateAlgebra
(maxTimeField φ φs) (eraseMaxTimeField φ φs) (maxTimeFieldPosFin φ φs) c]
trans (1 : ) • ∑ k : Option { x // x ∈ c.uncontracted }, sign
(List.insertIdx (↑(maxTimeFieldPosFin φ φs)) (maxTimeField φ φs) (eraseMaxTimeField φ φs))
(insertList (maxTimeField φ φs) (eraseMaxTimeField φ φs) c (maxTimeFieldPosFin φ φs) k) •
↑(WickContraction.timeContract 𝓞 (insertList (maxTimeField φ φs) (eraseMaxTimeField φ φs) c
(maxTimeFieldPosFin φ φs) k)) *
𝓞.crAnF (normalOrder (ofStateList (List.map (List.insertIdx (↑(maxTimeFieldPosFin φ φs))
(insertList (maxTimeField φ φs) c (maxTimeFieldPosFin φ φs) k) •
↑((c.insertList (maxTimeField φ φs) (maxTimeFieldPosFin φ φs) k).timeContract 𝓞) *
𝓞.crAnF 𝓝(ofStateList (List.map (List.insertIdx (↑(maxTimeFieldPosFin φ φs))
(maxTimeField φ φs) (eraseMaxTimeField φ φs)).get
(insertList (maxTimeField φ φs) (eraseMaxTimeField φ φs) c
(maxTimeFieldPosFin φ φs) k).uncontractedList)))
(insertList (maxTimeField φ φs) c
(maxTimeFieldPosFin φ φs) k).uncontractedList))
swap
· simp
rw [smul_smul]