feat: lemmas relating to index notation

This commit is contained in:
jstoobysmith 2024-10-17 11:43:33 +00:00
parent ac11a510cf
commit 672cc1ed8b
11 changed files with 510 additions and 17 deletions

View file

@ -0,0 +1,91 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Elab
import HepLean.Tensors.ComplexLorentz.Basic
import Mathlib.LinearAlgebra.TensorProduct.Basis
/-!
## Lemmas related to complex Lorentz tensors.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace Fermion
lemma coMetric_expand : {Lorentz.coMetric | μ ν}ᵀ.tensor =
(PiTensorProduct.tprod (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inl 0))
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inl 0)) (fun i => i.elim0) i) i) :
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]))
- (PiTensorProduct.tprod (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 0))
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 0)) (fun i => i.elim0) i) i) :
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]))
- (PiTensorProduct.tprod (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 1))
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 1)) (fun i => i.elim0) i) i) :
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]))
- (PiTensorProduct.tprod (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 2))
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 2)) (fun i => i.elim0) i) i) :
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down])) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Functor.id_obj, Fin.isValue]
erw [Lorentz.coMetric_apply_one, Lorentz.coMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul]
rfl
lemma coMetric_symm : {Lorentz.coMetric | μ ν = Lorentz.coMetric | ν μ}ᵀ := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, perm_tensor]
rw [coMetric_expand]
simp only [TensorStruct.F, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, Fin.isValue,
map_sub]
congr 1
congr 1
congr 1
all_goals
erw [OverColor.lift.map_tprod]
apply congrArg
funext i
match i with
| (0 : Fin 2) => rfl
| (1 : Fin 2) => rfl
open TensorTree in
lemma coMetric_prod_antiSymm (A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V)
(S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V)
(hA : (twoNodeE complexLorentzTensor Color.up Color.up A).tensor =
(TensorTree.neg (perm
(OverColor.equivToHomEq (Equality.finMapToEquiv ![1, 0] ![1, 0]) (by decide))
(twoNodeE complexLorentzTensor Color.up Color.up A))).tensor)
(hs : {S | μ ν = S | ν μ}ᵀ) : {A | μ ν ⊗ S | μ ν}ᵀ.tensor = 0 := by
have h1 : {A | μ ν ⊗ S | μ ν}ᵀ.tensor = - {A | μ ν ⊗ S | μ ν}ᵀ.tensor := by
nth_rewrite 1 [contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_fst hA))]
rw [contr_tensor_eq (contr_tensor_eq (neg_fst_prod _ _))]
rw [contr_tensor_eq (neg_contr _)]
rw [neg_contr]
rw [neg_tensor]
apply congrArg
sorry
sorry
end Fermion
end