refactor: Major refactor of lorentz group

This commit is contained in:
jstoobysmith 2024-07-01 16:56:15 -04:00
parent 0116994a58
commit 675b9a989a
11 changed files with 866 additions and 208 deletions

View file

@ -3,8 +3,9 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.Metric
import HepLean.SpaceTime.MinkowskiMetric
import HepLean.SpaceTime.AsSelfAdjointMatrix
import HepLean.SpaceTime.LorentzVector.NormOne
/-!
# The Lorentz Group
@ -26,7 +27,6 @@ identity.
noncomputable section
namespace SpaceTime
open Manifold
open Matrix
@ -34,146 +34,139 @@ open Complex
open ComplexConjugate
/-!
## Matrices which preserve `ηLin`
## Matrices which preserves the Minkowski metric
We start studying the properties of matrices which preserve `ηLin`.
These matrices form the Lorentz group, which we will define in the next section at `lorentzGroup`.
-/
variable {d : }
/-- We say a matrix `Λ` preserves `ηLin` if for all `x` and `y`,
`ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y`. -/
def PreservesηLin (Λ : Matrix (Fin 4) (Fin 4) ) : Prop :=
∀ (x y : SpaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y
open minkowskiMetric in
/-- The Lorentz group is the subset of matrices which preserve the minkowski metric. -/
def LorentzGroup (d : ) : Set (Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) :=
{Λ : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) |
∀ (x y : LorentzVector d), ⟪Λ *ᵥ x, Λ *ᵥ y⟫ₘ = ⟪x, y⟫ₘ}
namespace PreservesηLin
variable (Λ : Matrix (Fin 4) (Fin 4) )
namespace LorentzGroup
/-- Notation for the Lorentz group. -/
scoped[LorentzGroup] notation (name := lorentzGroup_notation) "𝓛" => LorentzGroup
lemma iff_norm : PreservesηLin Λ ↔
∀ (x : SpaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ x) = ηLin x x := by
open minkowskiMetric
variable {Λ Λ' : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) }
/-!
# Membership conditions
-/
lemma mem_iff_norm : Λ ∈ LorentzGroup d ↔
∀ (x : LorentzVector d), ⟪Λ *ᵥ x, Λ *ᵥ x⟫ₘ = ⟪x, x⟫ₘ := by
refine Iff.intro (fun h x => h x x) (fun h x y => ?_)
have hp := h (x + y)
have hn := h (x - y)
rw [mulVec_add] at hp
rw [mulVec_sub] at hn
simp only [map_add, LinearMap.add_apply, map_sub, LinearMap.sub_apply] at hp hn
rw [ηLin_symm (Λ *ᵥ y) (Λ *ᵥ x), ηLin_symm y x] at hp hn
rw [symm (Λ *ᵥ y) (Λ *ᵥ x), symm y x] at hp hn
linear_combination hp / 4 + -1 * hn / 4
lemma iff_det_selfAdjoint : PreservesηLin Λ ↔
∀ (x : selfAdjoint (Matrix (Fin 2) (Fin 2) )),
det ((toSelfAdjointMatrix ∘ toLin stdBasis stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1
= det x.1 := by
rw [iff_norm]
apply Iff.intro
intro h x
have h1 := congrArg ofReal $ h (toSelfAdjointMatrix.symm x)
simpa [← det_eq_ηLin] using h1
intro h x
have h1 := h (toSelfAdjointMatrix x)
simpa [det_eq_ηLin] using h1
lemma iff_on_right : PreservesηLin Λ ↔
∀ (x y : SpaceTime), ηLin x ((η * Λᵀ * η * Λ) *ᵥ y) = ηLin x y := by
lemma mem_iff_on_right : Λ ∈ LorentzGroup d ↔
∀ (x y : LorentzVector d), ⟪x, (dual Λ * Λ) *ᵥ y⟫ₘ = ⟪x, y⟫ₘ := by
apply Iff.intro
intro h x y
have h1 := h x y
rw [ηLin_mulVec_left, mulVec_mulVec] at h1
rw [← dual_mulVec_right, mulVec_mulVec] at h1
exact h1
intro h x y
rw [ηLin_mulVec_left, mulVec_mulVec]
rw [← dual_mulVec_right, mulVec_mulVec]
exact h x y
lemma iff_matrix : PreservesηLin Λ ↔ η * Λᵀ * η * Λ = 1 := by
rw [iff_on_right, ηLin_matrix_eq_identity_iff (η * Λᵀ * η * Λ)]
apply Iff.intro
· simp_all [ηLin, implies_true, iff_true, one_mulVec]
· exact fun a x y => Eq.symm (Real.ext_cauchy (congrArg Real.cauchy (a x y)))
lemma mem_iff_dual_mul_self : Λ ∈ LorentzGroup d ↔ dual Λ * Λ = 1 := by
rw [mem_iff_on_right, matrix_eq_id_iff]
exact forall_comm
lemma iff_matrix' : PreservesηLin Λ ↔ Λ * (η * Λᵀ * η) = 1 := by
rw [iff_matrix]
lemma mem_iff_self_mul_dual : Λ ∈ LorentzGroup d ↔ Λ * dual Λ = 1 := by
rw [mem_iff_dual_mul_self]
exact mul_eq_one_comm
lemma iff_transpose : PreservesηLin Λ ↔ PreservesηLin Λᵀ := by
lemma mem_iff_transpose : Λ ∈ LorentzGroup d ↔ Λᵀ ∈ LorentzGroup d := by
apply Iff.intro
intro h
have h1 := congrArg transpose ((iff_matrix Λ).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one] at h1
rw [iff_matrix' Λ.transpose, ← h1]
noncomm_ring
intro h
have h1 := congrArg transpose ((iff_matrix Λ.transpose).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one, transpose_transpose] at h1
rw [iff_matrix', ← h1]
· intro h
have h1 := congrArg transpose ((mem_iff_dual_mul_self).mp h)
rw [dual, transpose_mul, transpose_mul, transpose_mul, minkowskiMatrix.eq_transpose,
← mul_assoc, transpose_one] at h1
rw [mem_iff_self_mul_dual, ← h1, dual]
noncomm_ring
· intro h
have h1 := congrArg transpose ((mem_iff_dual_mul_self).mp h)
rw [dual, transpose_mul, transpose_mul, transpose_mul, minkowskiMatrix.eq_transpose,
← mul_assoc, transpose_one, transpose_transpose] at h1
rw [mem_iff_self_mul_dual, ← h1, dual]
noncomm_ring
lemma mem_mul (hΛ : Λ ∈ LorentzGroup d) (hΛ' : Λ' ∈ LorentzGroup d) : Λ * Λ' ∈ LorentzGroup d := by
rw [mem_iff_dual_mul_self, dual_mul]
trans dual Λ' * (dual Λ * Λ) * Λ'
noncomm_ring
rw [(mem_iff_dual_mul_self).mp hΛ]
simp [(mem_iff_dual_mul_self).mp hΛ']
/-- The lift of a matrix which preserves `ηLin` to an invertible matrix. -/
def liftGL {Λ : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) : GL (Fin 4) :=
⟨Λ, η * Λᵀ * η , (iff_matrix' Λ).mp h , (iff_matrix Λ).mp h⟩
lemma mul {Λ Λ' : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) (h' : PreservesηLin Λ') :
PreservesηLin (Λ * Λ') := by
intro x y
rw [← mulVec_mulVec, ← mulVec_mulVec, h, h']
lemma one : PreservesηLin 1 := by
intro x y
lemma one_mem : 1 ∈ LorentzGroup d := by
rw [mem_iff_dual_mul_self]
simp
lemma η : PreservesηLin η := by
simp [iff_matrix, η_transpose, η_sq]
lemma dual_mem (h : Λ ∈ LorentzGroup d) : dual Λ ∈ LorentzGroup d := by
rw [mem_iff_dual_mul_self, dual_dual]
exact mem_iff_self_mul_dual.mp h
end PreservesηLin
end LorentzGroup
/-!
## The Lorentz group
We define the Lorentz group as the set of matrices which preserve `ηLin`.
We show that the Lorentz group is indeed a group.
# The Lorentz group as a group
-/
/-- The Lorentz group is the subset of matrices which preserve ηLin. -/
def LorentzGroup : Type := {Λ : Matrix (Fin 4) (Fin 4) // PreservesηLin Λ}
@[simps mul_coe one_coe inv div]
instance lorentzGroupIsGroup : Group LorentzGroup where
mul A B := ⟨A.1 * B.1, PreservesηLin.mul A.2 B.2⟩
instance lorentzGroupIsGroup : Group (LorentzGroup d) where
mul A B := ⟨A.1 * B.1, LorentzGroup.mem_mul A.2 B.2⟩
mul_assoc A B C := by
apply Subtype.eq
exact Matrix.mul_assoc A.1 B.1 C.1
one := ⟨1, PreservesηLin.one
one := ⟨1, LorentzGroup.one_mem
one_mul A := by
apply Subtype.eq
exact Matrix.one_mul A.1
mul_one A := by
apply Subtype.eq
exact Matrix.mul_one A.1
inv A := ⟨η * A.1ᵀ * η , PreservesηLin.mul (PreservesηLin.mul PreservesηLin.η
((PreservesηLin.iff_transpose A.1).mp A.2)) PreservesηLin.η⟩
inv A := ⟨minkowskiMetric.dual A.1, LorentzGroup.dual_mem A.2⟩
mul_left_inv A := by
apply Subtype.eq
exact (PreservesηLin.iff_matrix A.1).mp A.2
exact LorentzGroup.mem_iff_dual_mul_self.mp A.2
/-- Notation for the Lorentz group. -/
scoped[SpaceTime] notation (name := lorentzGroup_notation) "𝓛" => LorentzGroup
/-- `lorentzGroup` has the subtype topology. -/
instance : TopologicalSpace LorentzGroup := instTopologicalSpaceSubtype
/-- `LorentzGroup` has the subtype topology. -/
instance : TopologicalSpace (LorentzGroup d) := instTopologicalSpaceSubtype
namespace LorentzGroup
lemma coe_inv (A : LorentzGroup) : (A⁻¹).1 = A.1⁻¹:= by
open minkowskiMetric
variable {Λ Λ' : LorentzGroup d}
@[simp]
lemma coe_inv : (Λ⁻¹).1 = Λ.1⁻¹:= by
refine (inv_eq_left_inv ?h).symm
exact (PreservesηLin.iff_matrix A.1).mp A.2
exact mem_iff_dual_mul_self.mp Λ.2
/-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/
def transpose (Λ : LorentzGroup) : LorentzGroup := ⟨Λ.1ᵀ, (PreservesηLin.iff_transpose Λ.1).mp Λ.2⟩
def transpose (Λ : LorentzGroup d) : LorentzGroup d :=
⟨Λ.1ᵀ, mem_iff_transpose.mp Λ.2⟩
/-!
@ -186,9 +179,9 @@ embedding.
-/
/-- The homomorphism of the Lorentz group into `GL (Fin 4) `. -/
def toGL : LorentzGroup →* GL (Fin 4) where
toFun A := ⟨A.1, (A⁻¹).1, mul_eq_one_comm.mpr $ (PreservesηLin.iff_matrix A.1).mp A.2,
(PreservesηLin.iff_matrix A.1).mp A.2⟩
def toGL : LorentzGroup d →* GL (Fin 1 ⊕ Fin d) where
toFun A := ⟨A.1, (A⁻¹).1, mul_eq_one_comm.mpr $ mem_iff_dual_mul_self.mp A.2,
mem_iff_dual_mul_self.mp A.2⟩
map_one' := by
simp
rfl
@ -197,7 +190,7 @@ def toGL : LorentzGroup →* GL (Fin 4) where
ext
rfl
lemma toGL_injective : Function.Injective toGL := by
lemma toGL_injective : Function.Injective (@toGL d) := by
intro A B h
apply Subtype.eq
rw [@Units.ext_iff] at h
@ -206,20 +199,21 @@ lemma toGL_injective : Function.Injective toGL := by
/-- The homomorphism from the Lorentz Group into the monoid of matrices times the opposite of
the monoid of matrices. -/
@[simps!]
def toProd : LorentzGroup →* (Matrix (Fin 4) (Fin 4) ) × (Matrix (Fin 4) (Fin 4) )ᵐᵒᵖ :=
def toProd : LorentzGroup d →* (Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ) ×
(Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) )ᵐᵒᵖ :=
MonoidHom.comp (Units.embedProduct _) toGL
lemma toProd_eq_transpose_η : toProd A = (A.1, ⟨η * A.1ᵀ * η⟩) := rfl
lemma toProd_eq_transpose_η : toProd Λ = (Λ.1, MulOpposite.op $ minkowskiMetric.dual Λ.1) := rfl
lemma toProd_injective : Function.Injective toProd := by
lemma toProd_injective : Function.Injective (@toProd d) := by
intro A B h
rw [toProd_eq_transpose_η, toProd_eq_transpose_η] at h
rw [@Prod.mk.inj_iff] at h
apply Subtype.eq
exact h.1
lemma toProd_continuous : Continuous toProd := by
change Continuous (fun A => (A.1, ⟨η * A.1ᵀ * η⟩))
lemma toProd_continuous : Continuous (@toProd d) := by
change Continuous (fun A => (A.1, ⟨dual A.1⟩))
refine continuous_prod_mk.mpr (And.intro ?_ ?_)
exact continuous_iff_le_induced.mpr fun U a => a
refine Continuous.comp' ?_ ?_
@ -230,7 +224,7 @@ lemma toProd_continuous : Continuous toProd := by
/-- The embedding from the Lorentz Group into the monoid of matrices times the opposite of
the monoid of matrices. -/
lemma toProd_embedding : Embedding toProd where
lemma toProd_embedding : Embedding (@toProd d) where
inj := toProd_injective
induced := by
refine (inducing_iff ⇑toProd).mp ?_
@ -238,7 +232,7 @@ lemma toProd_embedding : Embedding toProd where
exact (inducing_iff (Prod.fst ∘ ⇑toProd)).mpr rfl
/-- The embedding from the Lorentz Group into `GL (Fin 4) `. -/
lemma toGL_embedding : Embedding toGL.toFun where
lemma toGL_embedding : Embedding (@toGL d).toFun where
inj := toGL_injective
induced := by
refine ((fun {X} {t t'} => TopologicalSpace.ext_iff.mpr) ?_).symm
@ -248,11 +242,48 @@ lemma toGL_embedding : Embedding toGL.toFun where
exact exists_exists_and_eq_and
instance : TopologicalGroup LorentzGroup := Inducing.topologicalGroup toGL toGL_embedding.toInducing
instance : TopologicalGroup (LorentzGroup d) :=
Inducing.topologicalGroup toGL toGL_embedding.toInducing
section
open LorentzVector
/-!
# To a norm one Lorentz vector
-/
/-- The first column of a lorentz matrix as a `NormOneLorentzVector`. -/
@[simps!]
def toNormOneLorentzVector (Λ : LorentzGroup d) : NormOneLorentzVector d :=
⟨Λ.1 *ᵥ timeVec, by rw [NormOneLorentzVector.mem_iff, Λ.2, minkowskiMetric.on_timeVec]⟩
/-!
# The time like element
-/
/-- The time like element of a Lorentz matrix. -/
@[simp]
def timeComp (Λ : LorentzGroup d) : := Λ.1 (Sum.inl 0) (Sum.inl 0)
lemma timeComp_eq_toNormOneLorentzVector : timeComp Λ = (toNormOneLorentzVector Λ).1.time := by
simp only [time, toNormOneLorentzVector, timeVec, Fin.isValue, timeComp]
erw [Pi.basisFun_apply, mulVec_stdBasis]
lemma timeComp_mul (Λ Λ' : LorentzGroup d) : timeComp (Λ * Λ') =
⟪toNormOneLorentzVector (transpose Λ), (toNormOneLorentzVector Λ').1.spaceReflection⟫ₘ := by
simp only [timeComp, Fin.isValue, lorentzGroupIsGroup_mul_coe, mul_apply, Fintype.sum_sum_type,
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton, toNormOneLorentzVector,
transpose, timeVec, right_spaceReflection, time, space, PiLp.inner_apply, Function.comp_apply,
RCLike.inner_apply, conj_trivial]
erw [Pi.basisFun_apply, mulVec_stdBasis]
simp
end
end LorentzGroup
end SpaceTime

View file

@ -5,7 +5,7 @@ Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzGroup.Proper
import Mathlib.Topology.Constructions
import HepLean.SpaceTime.FourVelocity
import HepLean.SpaceTime.LorentzVector.NormOne
/-!
# Boosts
@ -28,15 +28,17 @@ A boost is the special case of a generalised boost when `u = stdBasis 0`.
-/
noncomputable section
namespace SpaceTime
namespace LorentzGroup
open FourVelocity
open NormOneLorentzVector
open minkowskiMetric
variable {d : }
/-- An auxillary linear map used in the definition of a generalised boost. -/
def genBoostAux₁ (u v : FourVelocity) : SpaceTime →ₗ[] SpaceTime where
toFun x := (2 * ηLin x u) • v.1.1
def genBoostAux₁ (u v : FuturePointing d) : LorentzVector d →ₗ[] LorentzVector d where
toFun x := (2 * ⟪x, u⟫ₘ) • v.1.1
map_add' x y := by
simp only [map_add, LinearMap.add_apply]
rw [mul_add, add_smul]
@ -46,17 +48,21 @@ def genBoostAux₁ (u v : FourVelocity) : SpaceTime →ₗ[] SpaceTime where
rw [← mul_assoc, mul_comm 2 c, mul_assoc, mul_smul]
/-- An auxillary linear map used in the definition of a genearlised boost. -/
def genBoostAux₂ (u v : FourVelocity) : SpaceTime →ₗ[] SpaceTime where
toFun x := - (ηLin x (u + v) / (1 + ηLin u v)) • (u + v)
def genBoostAux₂ (u v : FuturePointing d) : LorentzVector d →ₗ[] LorentzVector d where
toFun x := - (⟪x, u.1.1 + v⟫ₘ / (1 + ⟪u.1.1, v⟫ₘ)) • (u.1.1 + v)
map_add' x y := by
simp only
rw [ηLin.map_add, div_eq_mul_one_div]
rw [show (ηLin x + ηLin y) (↑u + ↑v) = ηLin x (u+v) + ηLin y (u+v) from rfl]
rw [add_mul, neg_add, add_smul, ← div_eq_mul_one_div, ← div_eq_mul_one_div]
rw [← add_smul]
apply congrFun
apply congrArg
field_simp
apply congrFun
apply congrArg
ring
map_smul' c x := by
simp only
rw [ηLin.map_smul]
rw [show (c • ηLin x) (↑u + ↑v) = c * ηLin x (u+v) from rfl]
rw [map_smul]
rw [show (c • minkowskiMetric x) (↑u + ↑v) = c * minkowskiMetric x (u+v) from rfl]
rw [mul_div_assoc, neg_mul_eq_mul_neg, smul_smul]
rfl
@ -174,5 +180,4 @@ end genBoost
end LorentzGroup
end SpaceTime
end

View file

@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.FourVelocity
import HepLean.SpaceTime.LorentzVector.NormOne
import HepLean.SpaceTime.LorentzGroup.Proper
/-!
# The Orthochronous Lorentz Group
@ -20,7 +20,6 @@ matrices.
noncomputable section
namespace SpaceTime
open Manifold
open Matrix
@ -28,37 +27,50 @@ open Complex
open ComplexConjugate
namespace LorentzGroup
open PreFourVelocity
/-- The first column of a lorentz matrix as a `PreFourVelocity`. -/
@[simp]
def fstCol (Λ : LorentzGroup) : PreFourVelocity := ⟨Λ.1 *ᵥ stdBasis 0, by
rw [mem_PreFourVelocity_iff, ηLin_expand]
simp only [Fin.isValue, stdBasis_mulVec]
have h00 := congrFun (congrFun ((PreservesηLin.iff_matrix Λ.1).mp Λ.2) 0) 0
simp only [Fin.isValue, mul_apply, transpose_apply, Fin.sum_univ_four, ne_eq, zero_ne_one,
not_false_eq_true, η_off_diagonal, zero_mul, add_zero, Fin.reduceEq, one_ne_zero, mul_zero,
zero_add, one_apply_eq] at h00
simp only [η_explicit, Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val',
cons_val_fin_one, vecCons_const, one_mul, mul_one, cons_val_one, head_cons, mul_neg, neg_mul,
cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, cons_val_three,
head_fin_const] at h00
exact h00⟩
variable {d : }
variable (Λ : LorentzGroup d)
open LorentzVector
open minkowskiMetric
/-- A Lorentz transformation is `orthochronous` if its `0 0` element is non-negative. -/
def IsOrthochronous (Λ : LorentzGroup) : Prop := 0 ≤ Λ.1 0 0
def IsOrthochronous : Prop := 0 ≤ timeComp Λ
lemma IsOrthochronous_iff_transpose (Λ : LorentzGroup) :
lemma IsOrthochronous_iff_futurePointing :
IsOrthochronous Λ ↔ (toNormOneLorentzVector Λ) ∈ NormOneLorentzVector.FuturePointing d := by
simp only [IsOrthochronous, timeComp_eq_toNormOneLorentzVector]
rw [NormOneLorentzVector.FuturePointing.mem_iff_time_nonneg]
lemma IsOrthochronous_iff_transpose :
IsOrthochronous Λ ↔ IsOrthochronous (transpose Λ) := by rfl
lemma IsOrthochronous_iff_fstCol_IsFourVelocity (Λ : LorentzGroup) :
IsOrthochronous Λ ↔ IsFourVelocity (fstCol Λ) := by
simp [IsOrthochronous, IsFourVelocity]
rw [stdBasis_mulVec]
lemma IsOrthochronous_iff_ge_one :
IsOrthochronous Λ ↔ 1 ≤ timeComp Λ := by
rw [IsOrthochronous_iff_futurePointing, NormOneLorentzVector.FuturePointing.mem_iff,
NormOneLorentzVector.time_pos_iff]
simp only [time, toNormOneLorentzVector, timeVec, Fin.isValue]
erw [Pi.basisFun_apply, mulVec_stdBasis]
rfl
lemma not_orthochronous_iff_le_neg_one :
¬ IsOrthochronous Λ ↔ timeComp Λ ≤ -1 := by
rw [timeComp, IsOrthochronous_iff_futurePointing, NormOneLorentzVector.FuturePointing.not_mem_iff,
NormOneLorentzVector.time_nonpos_iff]
simp only [time, toNormOneLorentzVector, timeVec, Fin.isValue]
erw [Pi.basisFun_apply, mulVec_stdBasis]
lemma not_orthochronous_iff_le_zero :
¬ IsOrthochronous Λ ↔ timeComp Λ ≤ 0 := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
rw [not_orthochronous_iff_le_neg_one] at h
linarith
rw [IsOrthochronous_iff_ge_one]
linarith
/-- The continuous map taking a Lorentz transformation to its `0 0` element. -/
def mapZeroZeroComp : C(LorentzGroup, ) := ⟨fun Λ => Λ.1 0 0,
Continuous.matrix_elem (continuous_iff_le_induced.mpr fun _ a => a) 0 0⟩
def timeCompCont : C(LorentzGroup d, ) := ⟨fun Λ => timeComp Λ ,
Continuous.matrix_elem (continuous_iff_le_induced.mpr fun _ a => a) (Sum.inl 0) (Sum.inl 0)
/-- An auxillary function used in the definition of `orthchroMapReal`. -/
def stepFunction : := fun t =>
@ -78,29 +90,23 @@ lemma stepFunction_continuous : Continuous stepFunction := by
/-- The continuous map from `lorentzGroup` to `` wh
taking Orthochronous elements to `1` and non-orthochronous to `-1`. -/
def orthchroMapReal : C(LorentzGroup, ) := ContinuousMap.comp
⟨stepFunction, stepFunction_continuous⟩ mapZeroZeroComp
def orthchroMapReal : C(LorentzGroup d, ) := ContinuousMap.comp
⟨stepFunction, stepFunction_continuous⟩ timeCompCont
lemma orthchroMapReal_on_IsOrthochronous {Λ : LorentzGroup} (h : IsOrthochronous Λ) :
lemma orthchroMapReal_on_IsOrthochronous {Λ : LorentzGroup d} (h : IsOrthochronous Λ) :
orthchroMapReal Λ = 1 := by
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h
simp only [IsFourVelocity] at h
rw [zero_nonneg_iff] at h
simp [stdBasis_mulVec] at h
have h1 : ¬ Λ.1 0 0 ≤ (-1 : ) := by linarith
change stepFunction (Λ.1 0 0) = 1
rw [stepFunction, if_neg h1, if_pos h]
rw [IsOrthochronous_iff_ge_one, timeComp] at h
change stepFunction (Λ.1 _ _) = 1
rw [stepFunction, if_pos h, if_neg]
linarith
lemma orthchroMapReal_on_not_IsOrthochronous {Λ : LorentzGroup} (h : ¬ IsOrthochronous Λ) :
lemma orthchroMapReal_on_not_IsOrthochronous {Λ : LorentzGroup d} (h : ¬ IsOrthochronous Λ) :
orthchroMapReal Λ = - 1 := by
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h
rw [not_IsFourVelocity_iff, zero_nonpos_iff] at h
simp only [fstCol, Fin.isValue, stdBasis_mulVec] at h
change stepFunction (Λ.1 0 0) = - 1
rw [not_orthochronous_iff_le_neg_one] at h
change stepFunction (timeComp _)= - 1
rw [stepFunction, if_pos h]
lemma orthchroMapReal_minus_one_or_one (Λ : LorentzGroup) :
lemma orthchroMapReal_minus_one_or_one (Λ : LorentzGroup d) :
orthchroMapReal Λ = -1 orthchroMapReal Λ = 1 := by
by_cases h : IsOrthochronous Λ
apply Or.inr $ orthchroMapReal_on_IsOrthochronous h
@ -109,65 +115,50 @@ lemma orthchroMapReal_minus_one_or_one (Λ : LorentzGroup) :
local notation "ℤ₂" => Multiplicative (ZMod 2)
/-- A continuous map from `lorentzGroup` to `ℤ₂` whose kernal are the Orthochronous elements. -/
def orthchroMap : C(LorentzGroup, ℤ₂) :=
def orthchroMap : C(LorentzGroup d, ℤ₂) :=
ContinuousMap.comp coeFor₂ {
toFun := fun Λ => ⟨orthchroMapReal Λ, orthchroMapReal_minus_one_or_one Λ⟩,
continuous_toFun := Continuous.subtype_mk (ContinuousMap.continuous orthchroMapReal) _}
lemma orthchroMap_IsOrthochronous {Λ : LorentzGroup} (h : IsOrthochronous Λ) :
lemma orthchroMap_IsOrthochronous {Λ : LorentzGroup d} (h : IsOrthochronous Λ) :
orthchroMap Λ = 1 := by
simp [orthchroMap, orthchroMapReal_on_IsOrthochronous h]
lemma orthchroMap_not_IsOrthochronous {Λ : LorentzGroup} (h : ¬ IsOrthochronous Λ) :
lemma orthchroMap_not_IsOrthochronous {Λ : LorentzGroup d} (h : ¬ IsOrthochronous Λ) :
orthchroMap Λ = Additive.toMul (1 : ZMod 2) := by
simp [orthchroMap, orthchroMapReal_on_not_IsOrthochronous h]
rfl
lemma zero_zero_mul (Λ Λ' : LorentzGroup) :
(Λ * Λ').1 0 0 = (fstCol (transpose Λ)).1 0 * (fstCol Λ').1 0 +
⟪(fstCol (transpose Λ)).1.space, (fstCol Λ').1.space⟫_ := by
simp only [Fin.isValue, lorentzGroupIsGroup_mul_coe, mul_apply, Fin.sum_univ_four, fstCol,
transpose, stdBasis_mulVec, transpose_apply, space, PiLp.inner_apply, Nat.succ_eq_add_one,
Nat.reduceAdd, RCLike.inner_apply, conj_trivial, Fin.sum_univ_three, cons_val_zero,
cons_val_one, head_cons, cons_val_two, tail_cons]
ring
lemma mul_othchron_of_othchron_othchron {Λ Λ' : LorentzGroup} (h : IsOrthochronous Λ)
lemma mul_othchron_of_othchron_othchron {Λ Λ' : LorentzGroup d} (h : IsOrthochronous Λ)
(h' : IsOrthochronous Λ') : IsOrthochronous (Λ * Λ') := by
rw [IsOrthochronous_iff_transpose] at h
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h'
rw [IsOrthochronous, zero_zero_mul]
exact euclid_norm_IsFourVelocity_IsFourVelocity h h'
rw [IsOrthochronous_iff_futurePointing] at h h'
rw [IsOrthochronous, timeComp_mul]
exact NormOneLorentzVector.FuturePointing.metric_reflect_mem_mem h h'
lemma mul_othchron_of_not_othchron_not_othchron {Λ Λ' : LorentzGroup} (h : ¬ IsOrthochronous Λ)
lemma mul_othchron_of_not_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : ¬ IsOrthochronous Λ)
(h' : ¬ IsOrthochronous Λ') : IsOrthochronous (Λ * Λ') := by
rw [IsOrthochronous_iff_transpose] at h
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h'
rw [IsOrthochronous, zero_zero_mul]
exact euclid_norm_not_IsFourVelocity_not_IsFourVelocity h h'
rw [IsOrthochronous_iff_futurePointing] at h h'
rw [IsOrthochronous, timeComp_mul]
exact NormOneLorentzVector.FuturePointing.metric_reflect_not_mem_not_mem h h'
lemma mul_not_othchron_of_othchron_not_othchron {Λ Λ' : LorentzGroup} (h : IsOrthochronous Λ)
lemma mul_not_othchron_of_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : IsOrthochronous Λ)
(h' : ¬ IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by
rw [not_orthochronous_iff_le_zero, timeComp_mul]
rw [IsOrthochronous_iff_transpose] at h
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h'
rw [IsOrthochronous_iff_fstCol_IsFourVelocity, not_IsFourVelocity_iff]
simp [stdBasis_mulVec]
change (Λ * Λ').1 0 0 ≤ _
rw [zero_zero_mul]
exact euclid_norm_IsFourVelocity_not_IsFourVelocity h h'
rw [IsOrthochronous_iff_futurePointing] at h h'
exact NormOneLorentzVector.FuturePointing.metric_reflect_mem_not_mem h h'
lemma mul_not_othchron_of_not_othchron_othchron {Λ Λ' : LorentzGroup} (h : ¬ IsOrthochronous Λ)
lemma mul_not_othchron_of_not_othchron_othchron {Λ Λ' : LorentzGroup d} (h : ¬ IsOrthochronous Λ)
(h' : IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by
rw [not_orthochronous_iff_le_zero, timeComp_mul]
rw [IsOrthochronous_iff_transpose] at h
rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h'
rw [IsOrthochronous_iff_fstCol_IsFourVelocity, not_IsFourVelocity_iff]
simp [stdBasis_mulVec]
change (Λ * Λ').1 0 0 ≤ _
rw [zero_zero_mul]
exact euclid_norm_not_IsFourVelocity_IsFourVelocity h h'
rw [IsOrthochronous_iff_futurePointing] at h h'
exact NormOneLorentzVector.FuturePointing.metric_reflect_not_mem_mem h h'
/-- The homomorphism from `lorentzGroup` to `ℤ₂` whose kernel are the Orthochronous elements. -/
def orthchroRep : LorentzGroup →* ℤ₂ where
def orthchroRep : LorentzGroup d →* ℤ₂ where
toFun := orthchroMap
map_one' := orthchroMap_IsOrthochronous (by simp [IsOrthochronous])
map_mul' Λ Λ' := by
@ -189,5 +180,4 @@ def orthchroRep : LorentzGroup →* ℤ₂ where
end LorentzGroup
end SpaceTime
end

View file

@ -14,7 +14,6 @@ We define the give a series of lemmas related to the determinant of the lorentz
noncomputable section
namespace SpaceTime
open Manifold
open Matrix
@ -23,10 +22,16 @@ open ComplexConjugate
namespace LorentzGroup
open minkowskiMetric
variable {d : }
/-- The determinant of a member of the lorentz group is `1` or `-1`. -/
lemma det_eq_one_or_neg_one (Λ : 𝓛) : Λ.1.det = 1 Λ.1.det = -1 := by
simpa [← sq, det_one, det_mul, det_mul, det_mul, det_transpose, det_η] using
(congrArg det ((PreservesηLin.iff_matrix' Λ.1).mp Λ.2))
lemma det_eq_one_or_neg_one (Λ : 𝓛 d) : Λ.1.det = 1 Λ.1.det = -1 := by
have h1 := (congrArg det ((mem_iff_self_mul_dual).mp Λ.2))
simp [det_mul, det_dual] at h1
exact mul_self_eq_one_iff.mp h1
local notation "ℤ₂" => Multiplicative (ZMod 2)
@ -47,7 +52,7 @@ def coeFor₂ : C(({-1, 1} : Set ), ℤ₂) where
exact continuous_of_discreteTopology
/-- The continuous map taking a lorentz matrix to its determinant. -/
def detContinuous : C(𝓛, ℤ₂) :=
def detContinuous : C(𝓛 d, ℤ₂) :=
ContinuousMap.comp coeFor₂ {
toFun := fun Λ => ⟨Λ.1.det, Or.symm (LorentzGroup.det_eq_one_or_neg_one _)⟩,
continuous_toFun := by
@ -56,7 +61,7 @@ def detContinuous : C(𝓛, ℤ₂) :=
Continuous.comp' (continuous_iff_le_induced.mpr fun U a => a) continuous_id'
}
lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup) :
lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup d) :
detContinuous Λ = detContinuous Λ' ↔ Λ.1.det = Λ'.1.det := by
apply Iff.intro
intro h
@ -75,7 +80,7 @@ lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup) :
/-- The representation taking a lorentz matrix to its determinant. -/
@[simps!]
def detRep : 𝓛 →* ℤ₂ where
def detRep : 𝓛 d →* ℤ₂ where
toFun Λ := detContinuous Λ
map_one' := by
simp [detContinuous, lorentzGroupIsGroup]
@ -88,9 +93,9 @@ def detRep : 𝓛 →* ℤ₂ where
<;> simp [h1, h2, detContinuous]
rfl
lemma detRep_continuous : Continuous detRep := detContinuous.2
lemma detRep_continuous : Continuous (@detRep d) := detContinuous.2
lemma det_on_connected_component {Λ Λ' : LorentzGroup} (h : Λ' ∈ connectedComponent Λ) :
lemma det_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) :
Λ.1.det = Λ'.1.det := by
obtain ⟨s, hs, hΛ'⟩ := h
let f : ContinuousMap s ℤ₂ := ContinuousMap.restrict s detContinuous
@ -99,36 +104,35 @@ lemma det_on_connected_component {Λ Λ' : LorentzGroup} (h : Λ' ∈ connected
(@IsPreconnected.subsingleton ℤ₂ _ _ _ (isPreconnected_range f.2))
(Set.mem_range_self ⟨Λ, hs.2⟩) (Set.mem_range_self ⟨Λ', hΛ'⟩)
lemma detRep_on_connected_component {Λ Λ' : LorentzGroup} (h : Λ' ∈ connectedComponent Λ) :
lemma detRep_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) :
detRep Λ = detRep Λ' := by
simp [detRep_apply, detRep_apply, detContinuous]
rw [det_on_connected_component h]
lemma det_of_joined {Λ Λ' : LorentzGroup} (h : Joined Λ Λ') : Λ.1.det = Λ'.1.det :=
lemma det_of_joined {Λ Λ' : LorentzGroup d} (h : Joined Λ Λ') : Λ.1.det = Λ'.1.det :=
det_on_connected_component $ pathComponent_subset_component _ h
/-- A Lorentz Matrix is proper if its determinant is 1. -/
@[simp]
def IsProper (Λ : LorentzGroup) : Prop := Λ.1.det = 1
def IsProper (Λ : LorentzGroup d) : Prop := Λ.1.det = 1
instance : DecidablePred IsProper := by
instance : DecidablePred (@IsProper d) := by
intro Λ
apply Real.decidableEq
lemma IsProper_iff (Λ : LorentzGroup) : IsProper Λ ↔ detRep Λ = 1 := by
lemma IsProper_iff (Λ : LorentzGroup d) : IsProper Λ ↔ detRep Λ = 1 := by
rw [show 1 = detRep 1 from Eq.symm (MonoidHom.map_one detRep)]
rw [detRep_apply, detRep_apply, detContinuous_eq_iff_det_eq]
simp only [IsProper, lorentzGroupIsGroup_one_coe, det_one]
lemma id_IsProper : IsProper 1 := by
lemma id_IsProper : (@IsProper d) 1 := by
simp [IsProper]
lemma isProper_on_connected_component {Λ Λ' : LorentzGroup} (h : Λ' ∈ connectedComponent Λ) :
lemma isProper_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) :
IsProper Λ ↔ IsProper Λ' := by
simp [detRep_apply, detRep_apply, detContinuous]
rw [det_on_connected_component h]
end LorentzGroup
end SpaceTime
end