refactor: Major refactor of lorentz group
This commit is contained in:
parent
0116994a58
commit
675b9a989a
11 changed files with 866 additions and 208 deletions
|
@ -3,8 +3,9 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.Metric
|
||||
import HepLean.SpaceTime.MinkowskiMetric
|
||||
import HepLean.SpaceTime.AsSelfAdjointMatrix
|
||||
import HepLean.SpaceTime.LorentzVector.NormOne
|
||||
/-!
|
||||
# The Lorentz Group
|
||||
|
||||
|
@ -26,7 +27,6 @@ identity.
|
|||
|
||||
noncomputable section
|
||||
|
||||
namespace SpaceTime
|
||||
|
||||
open Manifold
|
||||
open Matrix
|
||||
|
@ -34,146 +34,139 @@ open Complex
|
|||
open ComplexConjugate
|
||||
|
||||
/-!
|
||||
## Matrices which preserve `ηLin`
|
||||
## Matrices which preserves the Minkowski metric
|
||||
|
||||
We start studying the properties of matrices which preserve `ηLin`.
|
||||
These matrices form the Lorentz group, which we will define in the next section at `lorentzGroup`.
|
||||
|
||||
-/
|
||||
variable {d : ℕ}
|
||||
|
||||
/-- We say a matrix `Λ` preserves `ηLin` if for all `x` and `y`,
|
||||
`ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y`. -/
|
||||
def PreservesηLin (Λ : Matrix (Fin 4) (Fin 4) ℝ) : Prop :=
|
||||
∀ (x y : SpaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y
|
||||
open minkowskiMetric in
|
||||
/-- The Lorentz group is the subset of matrices which preserve the minkowski metric. -/
|
||||
def LorentzGroup (d : ℕ) : Set (Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :=
|
||||
{Λ : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ |
|
||||
∀ (x y : LorentzVector d), ⟪Λ *ᵥ x, Λ *ᵥ y⟫ₘ = ⟪x, y⟫ₘ}
|
||||
|
||||
namespace PreservesηLin
|
||||
|
||||
variable (Λ : Matrix (Fin 4) (Fin 4) ℝ)
|
||||
namespace LorentzGroup
|
||||
/-- Notation for the Lorentz group. -/
|
||||
scoped[LorentzGroup] notation (name := lorentzGroup_notation) "𝓛" => LorentzGroup
|
||||
|
||||
lemma iff_norm : PreservesηLin Λ ↔
|
||||
∀ (x : SpaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ x) = ηLin x x := by
|
||||
open minkowskiMetric
|
||||
|
||||
variable {Λ Λ' : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ}
|
||||
|
||||
/-!
|
||||
|
||||
# Membership conditions
|
||||
|
||||
-/
|
||||
|
||||
lemma mem_iff_norm : Λ ∈ LorentzGroup d ↔
|
||||
∀ (x : LorentzVector d), ⟪Λ *ᵥ x, Λ *ᵥ x⟫ₘ = ⟪x, x⟫ₘ := by
|
||||
refine Iff.intro (fun h x => h x x) (fun h x y => ?_)
|
||||
have hp := h (x + y)
|
||||
have hn := h (x - y)
|
||||
rw [mulVec_add] at hp
|
||||
rw [mulVec_sub] at hn
|
||||
simp only [map_add, LinearMap.add_apply, map_sub, LinearMap.sub_apply] at hp hn
|
||||
rw [ηLin_symm (Λ *ᵥ y) (Λ *ᵥ x), ηLin_symm y x] at hp hn
|
||||
rw [symm (Λ *ᵥ y) (Λ *ᵥ x), symm y x] at hp hn
|
||||
linear_combination hp / 4 + -1 * hn / 4
|
||||
|
||||
lemma iff_det_selfAdjoint : PreservesηLin Λ ↔
|
||||
∀ (x : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)),
|
||||
det ((toSelfAdjointMatrix ∘ toLin stdBasis stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1
|
||||
= det x.1 := by
|
||||
rw [iff_norm]
|
||||
apply Iff.intro
|
||||
intro h x
|
||||
have h1 := congrArg ofReal $ h (toSelfAdjointMatrix.symm x)
|
||||
simpa [← det_eq_ηLin] using h1
|
||||
intro h x
|
||||
have h1 := h (toSelfAdjointMatrix x)
|
||||
simpa [det_eq_ηLin] using h1
|
||||
|
||||
lemma iff_on_right : PreservesηLin Λ ↔
|
||||
∀ (x y : SpaceTime), ηLin x ((η * Λᵀ * η * Λ) *ᵥ y) = ηLin x y := by
|
||||
lemma mem_iff_on_right : Λ ∈ LorentzGroup d ↔
|
||||
∀ (x y : LorentzVector d), ⟪x, (dual Λ * Λ) *ᵥ y⟫ₘ = ⟪x, y⟫ₘ := by
|
||||
apply Iff.intro
|
||||
intro h x y
|
||||
have h1 := h x y
|
||||
rw [ηLin_mulVec_left, mulVec_mulVec] at h1
|
||||
rw [← dual_mulVec_right, mulVec_mulVec] at h1
|
||||
exact h1
|
||||
intro h x y
|
||||
rw [ηLin_mulVec_left, mulVec_mulVec]
|
||||
rw [← dual_mulVec_right, mulVec_mulVec]
|
||||
exact h x y
|
||||
|
||||
lemma iff_matrix : PreservesηLin Λ ↔ η * Λᵀ * η * Λ = 1 := by
|
||||
rw [iff_on_right, ηLin_matrix_eq_identity_iff (η * Λᵀ * η * Λ)]
|
||||
apply Iff.intro
|
||||
· simp_all [ηLin, implies_true, iff_true, one_mulVec]
|
||||
· exact fun a x y => Eq.symm (Real.ext_cauchy (congrArg Real.cauchy (a x y)))
|
||||
lemma mem_iff_dual_mul_self : Λ ∈ LorentzGroup d ↔ dual Λ * Λ = 1 := by
|
||||
rw [mem_iff_on_right, matrix_eq_id_iff]
|
||||
exact forall_comm
|
||||
|
||||
lemma iff_matrix' : PreservesηLin Λ ↔ Λ * (η * Λᵀ * η) = 1 := by
|
||||
rw [iff_matrix]
|
||||
lemma mem_iff_self_mul_dual : Λ ∈ LorentzGroup d ↔ Λ * dual Λ = 1 := by
|
||||
rw [mem_iff_dual_mul_self]
|
||||
exact mul_eq_one_comm
|
||||
|
||||
|
||||
lemma iff_transpose : PreservesηLin Λ ↔ PreservesηLin Λᵀ := by
|
||||
lemma mem_iff_transpose : Λ ∈ LorentzGroup d ↔ Λᵀ ∈ LorentzGroup d := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
have h1 := congrArg transpose ((iff_matrix Λ).mp h)
|
||||
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
|
||||
← mul_assoc, transpose_one] at h1
|
||||
rw [iff_matrix' Λ.transpose, ← h1]
|
||||
noncomm_ring
|
||||
intro h
|
||||
have h1 := congrArg transpose ((iff_matrix Λ.transpose).mp h)
|
||||
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
|
||||
← mul_assoc, transpose_one, transpose_transpose] at h1
|
||||
rw [iff_matrix', ← h1]
|
||||
· intro h
|
||||
have h1 := congrArg transpose ((mem_iff_dual_mul_self).mp h)
|
||||
rw [dual, transpose_mul, transpose_mul, transpose_mul, minkowskiMatrix.eq_transpose,
|
||||
← mul_assoc, transpose_one] at h1
|
||||
rw [mem_iff_self_mul_dual, ← h1, dual]
|
||||
noncomm_ring
|
||||
· intro h
|
||||
have h1 := congrArg transpose ((mem_iff_dual_mul_self).mp h)
|
||||
rw [dual, transpose_mul, transpose_mul, transpose_mul, minkowskiMatrix.eq_transpose,
|
||||
← mul_assoc, transpose_one, transpose_transpose] at h1
|
||||
rw [mem_iff_self_mul_dual, ← h1, dual]
|
||||
noncomm_ring
|
||||
|
||||
lemma mem_mul (hΛ : Λ ∈ LorentzGroup d) (hΛ' : Λ' ∈ LorentzGroup d) : Λ * Λ' ∈ LorentzGroup d := by
|
||||
rw [mem_iff_dual_mul_self, dual_mul]
|
||||
trans dual Λ' * (dual Λ * Λ) * Λ'
|
||||
noncomm_ring
|
||||
rw [(mem_iff_dual_mul_self).mp hΛ]
|
||||
simp [(mem_iff_dual_mul_self).mp hΛ']
|
||||
|
||||
/-- The lift of a matrix which preserves `ηLin` to an invertible matrix. -/
|
||||
def liftGL {Λ : Matrix (Fin 4) (Fin 4) ℝ} (h : PreservesηLin Λ) : GL (Fin 4) ℝ :=
|
||||
⟨Λ, η * Λᵀ * η , (iff_matrix' Λ).mp h , (iff_matrix Λ).mp h⟩
|
||||
|
||||
lemma mul {Λ Λ' : Matrix (Fin 4) (Fin 4) ℝ} (h : PreservesηLin Λ) (h' : PreservesηLin Λ') :
|
||||
PreservesηLin (Λ * Λ') := by
|
||||
intro x y
|
||||
rw [← mulVec_mulVec, ← mulVec_mulVec, h, h']
|
||||
|
||||
lemma one : PreservesηLin 1 := by
|
||||
intro x y
|
||||
lemma one_mem : 1 ∈ LorentzGroup d := by
|
||||
rw [mem_iff_dual_mul_self]
|
||||
simp
|
||||
|
||||
lemma η : PreservesηLin η := by
|
||||
simp [iff_matrix, η_transpose, η_sq]
|
||||
lemma dual_mem (h : Λ ∈ LorentzGroup d) : dual Λ ∈ LorentzGroup d := by
|
||||
rw [mem_iff_dual_mul_self, dual_dual]
|
||||
exact mem_iff_self_mul_dual.mp h
|
||||
|
||||
end PreservesηLin
|
||||
end LorentzGroup
|
||||
|
||||
/-!
|
||||
## The Lorentz group
|
||||
|
||||
We define the Lorentz group as the set of matrices which preserve `ηLin`.
|
||||
We show that the Lorentz group is indeed a group.
|
||||
# The Lorentz group as a group
|
||||
|
||||
-/
|
||||
|
||||
/-- The Lorentz group is the subset of matrices which preserve ηLin. -/
|
||||
def LorentzGroup : Type := {Λ : Matrix (Fin 4) (Fin 4) ℝ // PreservesηLin Λ}
|
||||
|
||||
@[simps mul_coe one_coe inv div]
|
||||
instance lorentzGroupIsGroup : Group LorentzGroup where
|
||||
mul A B := ⟨A.1 * B.1, PreservesηLin.mul A.2 B.2⟩
|
||||
instance lorentzGroupIsGroup : Group (LorentzGroup d) where
|
||||
mul A B := ⟨A.1 * B.1, LorentzGroup.mem_mul A.2 B.2⟩
|
||||
mul_assoc A B C := by
|
||||
apply Subtype.eq
|
||||
exact Matrix.mul_assoc A.1 B.1 C.1
|
||||
one := ⟨1, PreservesηLin.one⟩
|
||||
one := ⟨1, LorentzGroup.one_mem⟩
|
||||
one_mul A := by
|
||||
apply Subtype.eq
|
||||
exact Matrix.one_mul A.1
|
||||
mul_one A := by
|
||||
apply Subtype.eq
|
||||
exact Matrix.mul_one A.1
|
||||
inv A := ⟨η * A.1ᵀ * η , PreservesηLin.mul (PreservesηLin.mul PreservesηLin.η
|
||||
((PreservesηLin.iff_transpose A.1).mp A.2)) PreservesηLin.η⟩
|
||||
inv A := ⟨minkowskiMetric.dual A.1, LorentzGroup.dual_mem A.2⟩
|
||||
mul_left_inv A := by
|
||||
apply Subtype.eq
|
||||
exact (PreservesηLin.iff_matrix A.1).mp A.2
|
||||
exact LorentzGroup.mem_iff_dual_mul_self.mp A.2
|
||||
|
||||
/-- Notation for the Lorentz group. -/
|
||||
scoped[SpaceTime] notation (name := lorentzGroup_notation) "𝓛" => LorentzGroup
|
||||
|
||||
|
||||
/-- `lorentzGroup` has the subtype topology. -/
|
||||
instance : TopologicalSpace LorentzGroup := instTopologicalSpaceSubtype
|
||||
/-- `LorentzGroup` has the subtype topology. -/
|
||||
instance : TopologicalSpace (LorentzGroup d) := instTopologicalSpaceSubtype
|
||||
|
||||
namespace LorentzGroup
|
||||
|
||||
lemma coe_inv (A : LorentzGroup) : (A⁻¹).1 = A.1⁻¹:= by
|
||||
open minkowskiMetric
|
||||
|
||||
variable {Λ Λ' : LorentzGroup d}
|
||||
|
||||
@[simp]
|
||||
lemma coe_inv : (Λ⁻¹).1 = Λ.1⁻¹:= by
|
||||
refine (inv_eq_left_inv ?h).symm
|
||||
exact (PreservesηLin.iff_matrix A.1).mp A.2
|
||||
exact mem_iff_dual_mul_self.mp Λ.2
|
||||
|
||||
/-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/
|
||||
def transpose (Λ : LorentzGroup) : LorentzGroup := ⟨Λ.1ᵀ, (PreservesηLin.iff_transpose Λ.1).mp Λ.2⟩
|
||||
def transpose (Λ : LorentzGroup d) : LorentzGroup d :=
|
||||
⟨Λ.1ᵀ, mem_iff_transpose.mp Λ.2⟩
|
||||
|
||||
/-!
|
||||
|
||||
|
@ -186,9 +179,9 @@ embedding.
|
|||
-/
|
||||
|
||||
/-- The homomorphism of the Lorentz group into `GL (Fin 4) ℝ`. -/
|
||||
def toGL : LorentzGroup →* GL (Fin 4) ℝ where
|
||||
toFun A := ⟨A.1, (A⁻¹).1, mul_eq_one_comm.mpr $ (PreservesηLin.iff_matrix A.1).mp A.2,
|
||||
(PreservesηLin.iff_matrix A.1).mp A.2⟩
|
||||
def toGL : LorentzGroup d →* GL (Fin 1 ⊕ Fin d) ℝ where
|
||||
toFun A := ⟨A.1, (A⁻¹).1, mul_eq_one_comm.mpr $ mem_iff_dual_mul_self.mp A.2,
|
||||
mem_iff_dual_mul_self.mp A.2⟩
|
||||
map_one' := by
|
||||
simp
|
||||
rfl
|
||||
|
@ -197,7 +190,7 @@ def toGL : LorentzGroup →* GL (Fin 4) ℝ where
|
|||
ext
|
||||
rfl
|
||||
|
||||
lemma toGL_injective : Function.Injective toGL := by
|
||||
lemma toGL_injective : Function.Injective (@toGL d) := by
|
||||
intro A B h
|
||||
apply Subtype.eq
|
||||
rw [@Units.ext_iff] at h
|
||||
|
@ -206,20 +199,21 @@ lemma toGL_injective : Function.Injective toGL := by
|
|||
/-- The homomorphism from the Lorentz Group into the monoid of matrices times the opposite of
|
||||
the monoid of matrices. -/
|
||||
@[simps!]
|
||||
def toProd : LorentzGroup →* (Matrix (Fin 4) (Fin 4) ℝ) × (Matrix (Fin 4) (Fin 4) ℝ)ᵐᵒᵖ :=
|
||||
def toProd : LorentzGroup d →* (Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) ×
|
||||
(Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ)ᵐᵒᵖ :=
|
||||
MonoidHom.comp (Units.embedProduct _) toGL
|
||||
|
||||
lemma toProd_eq_transpose_η : toProd A = (A.1, ⟨η * A.1ᵀ * η⟩) := rfl
|
||||
lemma toProd_eq_transpose_η : toProd Λ = (Λ.1, MulOpposite.op $ minkowskiMetric.dual Λ.1) := rfl
|
||||
|
||||
lemma toProd_injective : Function.Injective toProd := by
|
||||
lemma toProd_injective : Function.Injective (@toProd d) := by
|
||||
intro A B h
|
||||
rw [toProd_eq_transpose_η, toProd_eq_transpose_η] at h
|
||||
rw [@Prod.mk.inj_iff] at h
|
||||
apply Subtype.eq
|
||||
exact h.1
|
||||
|
||||
lemma toProd_continuous : Continuous toProd := by
|
||||
change Continuous (fun A => (A.1, ⟨η * A.1ᵀ * η⟩))
|
||||
lemma toProd_continuous : Continuous (@toProd d) := by
|
||||
change Continuous (fun A => (A.1, ⟨dual A.1⟩))
|
||||
refine continuous_prod_mk.mpr (And.intro ?_ ?_)
|
||||
exact continuous_iff_le_induced.mpr fun U a => a
|
||||
refine Continuous.comp' ?_ ?_
|
||||
|
@ -230,7 +224,7 @@ lemma toProd_continuous : Continuous toProd := by
|
|||
|
||||
/-- The embedding from the Lorentz Group into the monoid of matrices times the opposite of
|
||||
the monoid of matrices. -/
|
||||
lemma toProd_embedding : Embedding toProd where
|
||||
lemma toProd_embedding : Embedding (@toProd d) where
|
||||
inj := toProd_injective
|
||||
induced := by
|
||||
refine (inducing_iff ⇑toProd).mp ?_
|
||||
|
@ -238,7 +232,7 @@ lemma toProd_embedding : Embedding toProd where
|
|||
exact (inducing_iff (Prod.fst ∘ ⇑toProd)).mpr rfl
|
||||
|
||||
/-- The embedding from the Lorentz Group into `GL (Fin 4) ℝ`. -/
|
||||
lemma toGL_embedding : Embedding toGL.toFun where
|
||||
lemma toGL_embedding : Embedding (@toGL d).toFun where
|
||||
inj := toGL_injective
|
||||
induced := by
|
||||
refine ((fun {X} {t t'} => TopologicalSpace.ext_iff.mpr) ?_).symm
|
||||
|
@ -248,11 +242,48 @@ lemma toGL_embedding : Embedding toGL.toFun where
|
|||
exact exists_exists_and_eq_and
|
||||
|
||||
|
||||
instance : TopologicalGroup LorentzGroup := Inducing.topologicalGroup toGL toGL_embedding.toInducing
|
||||
instance : TopologicalGroup (LorentzGroup d) :=
|
||||
Inducing.topologicalGroup toGL toGL_embedding.toInducing
|
||||
|
||||
section
|
||||
open LorentzVector
|
||||
/-!
|
||||
|
||||
# To a norm one Lorentz vector
|
||||
|
||||
-/
|
||||
|
||||
/-- The first column of a lorentz matrix as a `NormOneLorentzVector`. -/
|
||||
@[simps!]
|
||||
def toNormOneLorentzVector (Λ : LorentzGroup d) : NormOneLorentzVector d :=
|
||||
⟨Λ.1 *ᵥ timeVec, by rw [NormOneLorentzVector.mem_iff, Λ.2, minkowskiMetric.on_timeVec]⟩
|
||||
|
||||
/-!
|
||||
|
||||
# The time like element
|
||||
|
||||
-/
|
||||
|
||||
/-- The time like element of a Lorentz matrix. -/
|
||||
@[simp]
|
||||
def timeComp (Λ : LorentzGroup d) : ℝ := Λ.1 (Sum.inl 0) (Sum.inl 0)
|
||||
|
||||
lemma timeComp_eq_toNormOneLorentzVector : timeComp Λ = (toNormOneLorentzVector Λ).1.time := by
|
||||
simp only [time, toNormOneLorentzVector, timeVec, Fin.isValue, timeComp]
|
||||
erw [Pi.basisFun_apply, mulVec_stdBasis]
|
||||
|
||||
lemma timeComp_mul (Λ Λ' : LorentzGroup d) : timeComp (Λ * Λ') =
|
||||
⟪toNormOneLorentzVector (transpose Λ), (toNormOneLorentzVector Λ').1.spaceReflection⟫ₘ := by
|
||||
simp only [timeComp, Fin.isValue, lorentzGroupIsGroup_mul_coe, mul_apply, Fintype.sum_sum_type,
|
||||
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton, toNormOneLorentzVector,
|
||||
transpose, timeVec, right_spaceReflection, time, space, PiLp.inner_apply, Function.comp_apply,
|
||||
RCLike.inner_apply, conj_trivial]
|
||||
erw [Pi.basisFun_apply, mulVec_stdBasis]
|
||||
simp
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
end
|
||||
end LorentzGroup
|
||||
|
||||
|
||||
end SpaceTime
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue