refactor: Major refactor of lorentz group
This commit is contained in:
parent
0116994a58
commit
675b9a989a
11 changed files with 866 additions and 208 deletions
116
HepLean/SpaceTime/LorentzVector/Basic.lean
Normal file
116
HepLean/SpaceTime/LorentzVector/Basic.lean
Normal file
|
@ -0,0 +1,116 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Geometry.Manifold.SmoothManifoldWithCorners
|
||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
import Mathlib.LinearAlgebra.Matrix.DotProduct
|
||||
import LeanCopilot
|
||||
/-!
|
||||
|
||||
# Lorentz vectors
|
||||
|
||||
(aka 4-vectors)
|
||||
|
||||
In this file we define a Lorentz vector (in 4d, this is more often called a 4-vector).
|
||||
|
||||
One of the most important example of a Lorentz vector is SpaceTime.
|
||||
-/
|
||||
|
||||
/- The number of space dimensions . -/
|
||||
variable (d : ℕ)
|
||||
|
||||
/-- The type of Lorentz Vectors in `d`-space dimensions. -/
|
||||
def LorentzVector : Type := (Fin 1 ⊕ Fin d) → ℝ
|
||||
|
||||
/-- An instance of a additive commutative monoid on `LorentzVector`. -/
|
||||
instance : AddCommMonoid (LorentzVector d) := Pi.addCommMonoid
|
||||
|
||||
/-- An instance of a module on `LorentzVector`. -/
|
||||
noncomputable instance : Module ℝ (LorentzVector d) := Pi.module _ _ _
|
||||
|
||||
instance : AddCommGroup (LorentzVector d) := Pi.addCommGroup
|
||||
|
||||
namespace LorentzVector
|
||||
|
||||
variable {d : ℕ}
|
||||
|
||||
variable (v : LorentzVector d)
|
||||
|
||||
/-- The space components. -/
|
||||
@[simp]
|
||||
def space : EuclideanSpace ℝ (Fin d) := v ∘ Sum.inr
|
||||
|
||||
/-- The time component. -/
|
||||
@[simp]
|
||||
def time : ℝ := v (Sum.inl 0)
|
||||
|
||||
/-!
|
||||
|
||||
# The standard basis
|
||||
|
||||
-/
|
||||
|
||||
/-- The standard basis of `LorentzVector`. -/
|
||||
@[simps!]
|
||||
noncomputable def stdBasis : Basis (Fin 1 ⊕ Fin (d)) ℝ (LorentzVector d) := Pi.basisFun ℝ _
|
||||
|
||||
/-- The standard unit time vector. -/
|
||||
@[simp]
|
||||
noncomputable def timeVec : (LorentzVector d) := stdBasis (Sum.inl 0)
|
||||
|
||||
@[simp]
|
||||
lemma timeVec_space : (@timeVec d).space = 0 := by
|
||||
funext i
|
||||
simp [space, stdBasis]
|
||||
erw [Pi.basisFun_apply]
|
||||
simp_all only [Fin.isValue, LinearMap.stdBasis_apply', ↓reduceIte]
|
||||
|
||||
@[simp]
|
||||
lemma timeVec_time: (@timeVec d).time = 1 := by
|
||||
simp [space, stdBasis]
|
||||
erw [Pi.basisFun_apply]
|
||||
simp_all only [Fin.isValue, LinearMap.stdBasis_apply', ↓reduceIte]
|
||||
|
||||
/-!
|
||||
|
||||
# Reflection of space
|
||||
|
||||
-/
|
||||
|
||||
/-- The reflection of space as a linear map. -/
|
||||
@[simps!]
|
||||
def spaceReflectionLin : LorentzVector d →ₗ[ℝ] LorentzVector d where
|
||||
toFun x := Sum.elim (x ∘ Sum.inl) (- x ∘ Sum.inr)
|
||||
map_add' x y := by
|
||||
funext i
|
||||
rcases i with i | i
|
||||
· simp only [Sum.elim_inl]
|
||||
apply Eq.refl
|
||||
· simp only [Sum.elim_inr, Pi.neg_apply]
|
||||
apply neg_add
|
||||
map_smul' c x := by
|
||||
funext i
|
||||
rcases i with i | i
|
||||
· simp only [Sum.elim_inl, Pi.smul_apply]
|
||||
apply smul_eq_mul
|
||||
· simp [ HSMul.hSMul, SMul.smul]
|
||||
|
||||
|
||||
/-- The reflection of space. -/
|
||||
@[simp]
|
||||
def spaceReflection : LorentzVector d := spaceReflectionLin v
|
||||
|
||||
@[simp]
|
||||
lemma spaceReflection_space : v.spaceReflection.space = - v.space := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma spaceReflection_time : v.spaceReflection.time = v.time := by
|
||||
rfl
|
||||
|
||||
|
||||
|
||||
end LorentzVector
|
Loading…
Add table
Add a link
Reference in a new issue