feat: Sorry free version

This commit is contained in:
jstoobysmith 2024-12-19 11:23:49 +00:00
parent ab7da149c6
commit 681ffbeafd
7 changed files with 208 additions and 474 deletions

View file

@ -118,18 +118,14 @@ structure Splitting {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
h𝓑p : ∀ i j, le1 j (𝓑p i)
def toCenterTerm {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
(q : I → Fin 2) {r : List I}
(q : I → Fin 2)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [SuperCommuteCenterMap F]
(c : Contractions r) (S : Splitting f le1) : A :=
match c with
| ⟨aux, c⟩ =>
match c with
| .nil => 1
| .cons (a := a) (l := l) (aux := aux') none c => toCenterTerm f q le1 F ⟨aux', c⟩ S
| .cons (a := a) (l := l) (aux := aux') (some n) c =>
toCenterTerm f q le1 F ⟨aux', c⟩ S *
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
: {r : List I} → (c : Contractions r) → (S : Splitting f le1) → A
| [], ⟨[], .nil⟩, _ => 1
| _ :: _, ⟨_, .cons (aux := aux') none c⟩, S => toCenterTerm f q le1 F ⟨aux', c⟩ S
| a :: _, ⟨_, .cons (aux := aux') (some n) c⟩, S => toCenterTerm f q le1 F ⟨aux', c⟩ S *
superCommuteCoef q [aux'.get n] (List.take (↑n) aux') •
F (((superCommute fun i => q i.fst) (ofList [S.𝓑p a] (S.𝓧p a))) (ofListM f [aux'.get n] 1))
@ -137,7 +133,7 @@ lemma toCenterTerm_none {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
(q : I → Fin 2) {r : List I}
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [SuperCommuteCenterMap F]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
(S : Splitting f le1) (a : I) (c : Contractions r) :
toCenterTerm (r := a :: r) f q le1 F (Contractions.consEquiv.symm ⟨c, none⟩) S = toCenterTerm f q le1 F c S := by
rw [consEquiv]
@ -146,13 +142,30 @@ lemma toCenterTerm_none {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
rfl
lemma toCenterTerm_center {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
(q : I → Fin 2) {r : List I}
(q : I → Fin 2)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [SuperCommuteCenterMap F]
(c : Contractions r) (S : Splitting f le1) :
(c.toCenterTerm f q le1 F S) ∈ Subalgebra.center A := by
sorry
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
: {r : List I} → (c : Contractions r) → (S : Splitting f le1) →
(c.toCenterTerm f q le1 F S) ∈ Subalgebra.center A
| [], ⟨[], .nil⟩, _ => by
dsimp [toCenterTerm]
exact Subalgebra.one_mem (Subalgebra.center A)
| _ :: _, ⟨_, .cons (aux := aux') none c⟩, S => by
dsimp [toCenterTerm]
exact toCenterTerm_center f q le1 F ⟨aux', c⟩ S
| a :: _, ⟨_, .cons (aux := aux') (some n) c⟩, S => by
dsimp [toCenterTerm]
refine Subalgebra.mul_mem (Subalgebra.center A) ?hx ?hy
exact toCenterTerm_center f q le1 F ⟨aux', c⟩ S
apply Subalgebra.smul_mem
rw [ofListM_expand]
rw [map_sum, map_sum]
refine Subalgebra.sum_mem (Subalgebra.center A) ?hy.hx.h
intro x _
simp [CreatAnnilateSect.toList]
rw [ofList_singleton]
exact OperatorMap.superCommute_ofList_singleton_ι_center (q := fun i => q i.1) (le1 := le1) F (S.𝓑p a) ⟨aux'[↑n], x.head⟩
end Contractions
@ -160,7 +173,7 @@ lemma static_wick_nil {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [SuperCommuteCenterMap F]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
(S : Contractions.Splitting f le1) :
F (ofListM f [] 1) = ∑ c : Contractions [],
c.toCenterTerm f q le1 F S * F (koszulOrder le1 (fun i => q i.fst) (ofListM f c.normalize 1)) := by
@ -172,8 +185,9 @@ lemma static_wick_nil {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
lemma static_wick_cons {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
[IsTrans ((i : I) × f i) le1] [IsTotal ((i : I) × f i) le1]
{A : Type} [Semiring A] [Algebra A] (r : List I) (a : I)
(F : FreeAlgebra (Σ i, f i) →ₐ A) [SuperCommuteCenterMap F]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
(S : Contractions.Splitting f le1)
(ih : F (ofListM f r 1) =
∑ c : Contractions r, c.toCenterTerm f q le1 F S * F (koszulOrder le1 (fun i => q i.fst) (ofListM f c.normalize 1))) :
@ -228,9 +242,9 @@ lemma static_wick_cons {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
theorem static_wick_theorem {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1] [IsTrans ((i : I) × f i) le1] [IsTotal ((i : I) × f i) le1]
{A : Type} [Semiring A] [Algebra A] (r : List I)
(F : FreeAlgebra (Σ i, f i) →ₐ A) [SuperCommuteCenterMap F]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
(S : Contractions.Splitting f le1) :
F (ofListM f r 1) = ∑ c : Contractions r, c.toCenterTerm f q le1 F S *
F (koszulOrder le1 (fun i => q i.fst) (ofListM f c.normalize 1)) := by

View file

@ -213,6 +213,20 @@ lemma toList_grade (q : I → Fin 2) :
rw [h0, h0']
rw [h1]
@[simp]
lemma toList_grade_take {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) : (r : List I) → (a : CreatAnnilateSect f r) → (n : ) →
grade (fun i => q i.fst) (List.take n a.toList) = grade q (List.take n r)
| [], _, _ => by
simp [toList]
| i :: r, a, 0 => by
simp
| i :: r, a, Nat.succ n => by
simp only [grade, Fin.isValue]
rw [toList_grade_take q r a.tail n]
def extractEquiv {I : Type} {f : I → Type} [(i : I) → Fintype (f i)] {l : List I} (n : Fin l.length) : CreatAnnilateSect f l ≃
f (l.get n) × CreatAnnilateSect f (l.eraseIdx n) := by
match l with
@ -246,6 +260,25 @@ def extractEquiv {I : Type} {f : I → Type} [(i : I) → Fintype (f i)] {l : L
next h_1 => simp_all only [not_lt, Fin.val_succ, Fin.coe_cast]))
exact (Fin.insertNthEquiv _ _).symm.trans (Equiv.prodCongr (Equiv.refl _) e1.symm)
lemma extractEquiv_symm_toList_get_same {I : Type} {f : I → Type} [(i : I) → Fintype (f i)]
{l : List I} (n : Fin l.length) (a0 : f (l.get n)) (a : CreatAnnilateSect f (l.eraseIdx n)) :
((extractEquiv n).symm (a0, a)).toList[n] = ⟨l[n], a0⟩ := by
match l with
| [] => exact Fin.elim0 n
| l0 :: l =>
trans (((CreatAnnilateSect.extractEquiv n).symm (a0, a)).toList).get (Fin.cast (by simp) n)
· simp only [List.length_cons, List.get_eq_getElem, Fin.coe_cast]
rfl
rw [CreatAnnilateSect.toList_get]
simp only [List.get_eq_getElem, List.length_cons, extractEquiv, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.prodCongr_symm,
Equiv.refl_symm, Equiv.prodCongr_apply, Equiv.coe_refl, Prod.map_apply, id_eq,
Function.comp_apply, Fin.cast_trans, Fin.cast_eq_self, Sigma.mk.inj_iff, heq_eq_eq]
apply And.intro
· rfl
erw [Fin.insertNthEquiv_apply]
simp only [Fin.insertNth_apply_same]
def eraseIdx (n : Fin l.length) : CreatAnnilateSect f (l.eraseIdx n) :=
(extractEquiv n a).2
@ -334,6 +367,15 @@ lemma eraseIdx_toList : {l : List I} → {n : Fin l.length} → (a : CreatAnnil
· conv_rhs => rw [← eraseIdx_toList (l := r) (n := ⟨n, Nat.succ_lt_succ_iff.mp h⟩) a.tail]
rw [eraseIdx_succ_tail]
lemma extractEquiv_symm_eraseIdx {I : Type} {f : I → Type} [(i : I) → Fintype (f i)]
{l : List I} (n : Fin l.length) (a0 : f l[↑n]) (a : CreatAnnilateSect f (l.eraseIdx n)) :
((extractEquiv n).symm (a0, a)).eraseIdx n = a := by
match l with
| [] => exact Fin.elim0 n
| l0 :: l =>
rw [eraseIdx, extractEquiv]
simp
lemma toList_koszulSignInsert {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
(l : List I) (a : CreatAnnilateSect f l) (x : (i : I) × f i):
@ -524,375 +566,5 @@ lemma koszulOrder_ofListM_eq_ofListM {I : Type} {f : I → Type} [∀ i, Fintype
rw [koszulOrder_ofListM, koszulOrder_ofList, map_smul]
rfl
def liftM {I : Type} (f : I → Type) [∀ i, Fintype (f i)] :
(l : List I) → (a : Π i, f (l.get i)) → List (Σ i, f i)
| [], _ => []
| i :: l, a => ⟨i, a ⟨0, Nat.zero_lt_succ l.length⟩⟩ :: liftM f l (fun i => a (Fin.succ i))
@[simp]
lemma liftM_length {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r : List I) (a : Π i, f (r.get i)) :
(liftM f r a).length = r.length := by
induction r with
| nil => rfl
| cons i r ih =>
simp only [liftM, List.length_cons, Fin.zero_eta, add_left_inj]
rw [ih]
lemma liftM_cons {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r0 : I) (r : List I) (a : Π i, f ((r0 :: r).get i)) :
liftM f (r0 :: r) a = ⟨r0, a ⟨0, Nat.zero_lt_succ r.length⟩⟩ :: liftM f r (fun i => a (Fin.succ i)) := by
simp [liftM, List.length_cons, Fin.zero_eta]
lemma liftM_get {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r : List I) (a : Π i, f (r.get i)) :
(liftM f r a).get = (fun i => ⟨r.get i, a i⟩) ∘ Fin.cast (by simp) := by
induction r with
| nil =>
funext i
exact Fin.elim0 i
| cons i l ih =>
simp only [liftM, List.length_cons, Fin.zero_eta, List.get_eq_getElem]
funext x
match x with
| ⟨0, h⟩ => rfl
| ⟨x + 1, h⟩ =>
simp only [List.length_cons, List.get_eq_getElem, Prod.mk.eta, List.getElem_cons_succ,
Function.comp_apply, Fin.cast_mk]
change (liftM f _ _).get _ = _
rw [ih]
simp
def liftMCongrEquiv {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r0 : I) (r : List I) (n : Fin (r0 :: r).length) :
(Π i, f ((r0 :: r).get i)) ≃ f ((r0 :: r).get n) × Π i, f ((r0 :: r).get (n.succAbove i)) :=
(Fin.insertNthEquiv _ _).symm
lemma liftMCongrEquiv_symm_succAbove {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r0 : I) (r : List I)
(n : Fin (r0 :: r).length) (a0 : f ((r0 :: r).get n) ) (a : Π i, f ((r0 :: r).get (n.succAbove i)))
(i : Fin r.length) :
(liftMCongrEquiv f r0 r n).symm (a0, a) (n.succAbove i) = a i := by
simp [liftMCongrEquiv]
@[simp]
lemma liftMCongrEquiv_symm_zero_succ {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r0 : I) (r : List I)
(a0 : f ((r0 :: r).get ⟨0, by simp⟩) ) (a : Π i, f ((r0 :: r).get ( i.succ)))
(i : Fin r.length) :
(liftMCongrEquiv f r0 r ⟨0, by simp⟩).symm (a0, a) i.succ = a i := by
trans (liftMCongrEquiv f r0 r ⟨0, by simp⟩).symm (a0, a)
((⟨0, by simp⟩ : Fin (r0 :: r).length).succAbove i)
rfl
rw [liftMCongrEquiv_symm_succAbove]
lemma ofListM_expand {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ) :
(l : List I) → ofListM f l x = ∑ (a : Π i, f (l.get i)), ofList (liftM f l a) x
| [] => by
simp only [ofListM, List.length_nil, List.get_eq_getElem, Finset.univ_unique, liftM,
Finset.sum_const, Finset.card_singleton, one_smul]
rw [ofList_eq_smul_one, map_smul, ofList_empty, ofList_eq_smul_one, ofList_empty, map_one]
| i :: l => by
rw [ofListM_cons, ofListM_expand f x l]
let e1 : f i × (Π j, f (l.get j)) ≃ (Π j, f ((i :: l).get j)) :=
(Fin.insertNthEquiv (fun j => f ((i :: l).get j)) 0)
rw [← e1.sum_comp (α := FreeAlgebra _)]
erw [Finset.sum_product]
rw [Finset.sum_mul]
conv_lhs =>
rhs
intro n
rw [Finset.mul_sum]
congr
funext j
congr
funext n
rw [← ofList_singleton, ← ofList_pair, one_mul]
rfl
@[simp]
lemma liftM_grade {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (r : List I) (a : Π i, f (r.get i)) :
grade (fun i => q i.fst) (liftM f r a) = 1 ↔ grade q r = 1 := by
induction r with
| nil =>
simp [liftM]
| cons i r ih =>
simp only [grade, Fin.isValue, ite_eq_right_iff, zero_ne_one, imp_false]
have ih' := ih (fun i => a i.succ)
have h1 : grade (fun i => q i.fst) (liftM f r fun i => a i.succ) = grade q r := by
by_cases h : grade q r = 1
· simp_all
· have h0 : grade q r = 0 := by
omega
rw [h0] at ih'
simp only [Fin.isValue, zero_ne_one, iff_false] at ih'
have h0' : grade (fun i => q i.fst) (liftM f r fun i => a i.succ) = 0 := by
omega
rw [h0, h0']
rw [h1]
@[simp]
lemma liftM_grade_take {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) : (r : List I) → (a : Π i, f (r.get i)) → (n : ) →
grade (fun i => q i.fst) (List.take n (liftM f r a)) = grade q (List.take n r)
| [], _, _ => by
simp [liftM]
| i :: r, a, 0 => by
simp
| i :: r, a, Nat.succ n => by
simp only [grade, Fin.isValue]
have ih : grade (fun i => q i.fst) (List.take n (liftM f r fun i => a i.succ)) = grade q (List.take n r) := by
refine (liftM_grade_take q r (fun i => a i.succ) n)
rw [ih]
def listMEraseEquiv {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
{r0 : I} {r : List I} (n : Fin (r0 :: r).length) :
(Π (i : Fin ((r0 :: r).eraseIdx ↑n).length) , f (((r0 :: r).eraseIdx ↑n).get i))
≃ Π (i : Fin r.length), f ((r0 :: r).get (n.succAbove i)) :=
Equiv.piCongr (Fin.castOrderIso (by rw [eraseIdx_cons_length])).toEquiv
fun x => Equiv.cast (congrArg f (by
rw [HepLean.List.eraseIdx_get]
simp
congr 1
simp [Fin.succAbove]
split
next h =>
simp_all only [Fin.coe_castSucc]
split
next h_1 => simp_all only [Fin.coe_castSucc, Fin.coe_cast]
next h_1 =>
simp_all only [not_lt, Fin.val_succ, Fin.coe_cast, self_eq_add_right, one_ne_zero]
simp [Fin.le_def] at h_1
simp [Fin.lt_def] at h
omega
next h =>
simp_all only [not_lt, Fin.val_succ]
split
next h_1 =>
simp_all only [Fin.coe_castSucc, Fin.coe_cast, add_right_eq_self, one_ne_zero]
simp [Fin.lt_def] at h_1
simp [Fin.le_def] at h
omega
next h_1 => simp_all only [not_lt, Fin.val_succ, Fin.coe_cast]))
lemma liftM_eraseIdx {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(r0 : I) :
(r : List I) → (n : Fin (r0 :: r).length) →
(a0 : f (r0 :: r)[↑n]) → (a : (i : Fin r.length) → f (r0 :: r)[↑(n.succAbove i)]) →
(liftM f (r0 :: r) ((liftMCongrEquiv f r0 r n).symm (a0, a))).eraseIdx ↑n =
liftM f ((r0 :: r).eraseIdx ↑n) ((listMEraseEquiv n).symm a) := by
intro r n a0 a
match n with
| ⟨0, h0⟩ =>
simp
rw [liftM_cons]
simp
conv_lhs =>
rhs
intro n
erw [liftMCongrEquiv_symm_zero_succ]
simp [listMEraseEquiv]
| ⟨n + 1, hn⟩ =>
simp
rw [liftM_cons, liftM_cons]
simp
apply And.intro
· sorry
·
/-
lemma liftM_eraseIdx {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (r0 : I): (r : List I) → (n : Fin (r0 :: r).length) → (a : Π i, f ((r0 :: r).get i)) →
(liftM f (r0 :: r) a).eraseIdx ↑n = liftM f (List.eraseIdx (r0 :: r) n) ((listMEraseEquiv q n).symm a)
| r, ⟨0, h⟩, a => by
simp [List.eraseIdx]
rfl
| r, ⟨n + 1, h⟩, a => by
have hf : (r.eraseIdx n).length + 1 = r.length := by
rw [List.length_eraseIdx]
simp at h
simp [h]
omega
have hn : n < (r.eraseIdx n).length + 1 := by
simp at h
rw [hf]
exact h
simp [liftM]
apply And.intro
· refine eq_cast_iff_heq.mpr ?left.a
simp [Fin.cast]
rw [Fin.succAbove]
simp
rw [if_pos]
simp
simp
refine Fin.add_one_pos ↑n ?left.a.hc.h
simp at h
rw [Fin.lt_def]
conv_rhs => simp
rw [hf]
simp
rw [Nat.mod_eq_of_modEq rfl (Nat.le.step h)]
exact h
· have hl := liftM_eraseIdx q r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ (fun i => a i.succ)
rw [hl]
congr
funext i
rw [Equiv.apply_eq_iff_eq_symm_apply]
simp
refine eq_cast_iff_heq.mpr ?right.e_a.h.a
congr
rw [Fin.ext_iff]
simp [Fin.succAbove]
simp [Fin.lt_def]
rw [@Fin.val_add_one]
simp [hn]
rw [Nat.mod_eq_of_lt hn]
rw [Nat.mod_eq_of_lt]
have hnot : ¬ ↑n = Fin.last ((r.eraseIdx n).length + 1) := by
rw [Fin.ext_iff]
simp
rw [Nat.mod_eq_of_lt]
omega
exact Nat.lt_add_right 1 hn
simp [hnot]
by_cases hi : i.val < n
· simp [hi]
· simp [hi]
· exact Nat.lt_add_right 1 hn
-/
lemma koszulSignInsert_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
(l : List I) (a : (j : Fin l.length) → f (l.get j)) (x : (i : I) × f i):
koszulSignInsert (fun i j => le1 i.fst j.fst) (fun i => q i.fst) x
(liftM f l a) =
koszulSignInsert le1 q x.1 l := by
induction l with
| nil => simp [koszulSignInsert]
| cons b l ih =>
simp [koszulSignInsert]
rw [ih]
lemma koszulSign_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
(l : List I) (a : (i : Fin l.length) → f (l.get i)) :
koszulSign (fun i j => le1 i.fst j.fst) (fun i => q i.fst) (liftM f l a) =
koszulSign le1 q l := by
induction l with
| nil => simp [koszulSign]
| cons i l ih =>
simp [koszulSign, liftM]
rw [ih]
congr 1
rw [koszulSignInsert_liftM]
lemma insertionSortEquiv_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(le1 : I → I → Prop) [DecidableRel le1](l : List I) (a : (i : Fin l.length) → f (l.get i)) :
(HepLean.List.insertionSortEquiv (fun i j => le1 i.fst j.fst) (liftM f l a)) =
(Fin.castOrderIso (by simp)).toEquiv.trans ((HepLean.List.insertionSortEquiv le1 l).trans
(Fin.castOrderIso (by simp)).toEquiv) := by
induction l with
| nil =>
simp [liftM, HepLean.List.insertionSortEquiv]
| cons i l ih =>
simp only [liftM, List.length_cons, Fin.zero_eta, List.insertionSort]
conv_lhs => simp [HepLean.List.insertionSortEquiv]
erw [orderedInsertEquiv_sigma]
rw [ih]
simp only [HepLean.Fin.equivCons_trans, Nat.succ_eq_add_one,
HepLean.Fin.equivCons_castOrderIso, List.length_cons, Nat.add_zero, Nat.zero_eq,
Fin.zero_eta]
ext x
conv_rhs => simp [HepLean.List.insertionSortEquiv]
simp only [Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_trans,
Fin.coe_cast]
have h2' (i : Σ i, f i) (l' : List ( Σ i, f i)) :
List.map (fun i => i.1) (List.orderedInsert (fun i j => le1 i.fst j.fst) i l') =
List.orderedInsert le1 i.1 (List.map (fun i => i.1) l') := by
induction l' with
| nil =>
simp [HepLean.List.orderedInsertEquiv]
| cons j l' ih' =>
by_cases hij : (fun i j => le1 i.fst j.fst) i j
· rw [List.orderedInsert_of_le]
· erw [List.orderedInsert_of_le]
· simp
· exact hij
· exact hij
· simp only [List.orderedInsert, hij, ↓reduceIte, List.unzip_snd, List.map_cons]
have hn : ¬ le1 i.1 j.1 := hij
simp only [hn, ↓reduceIte, List.cons.injEq, true_and]
simpa using ih'
have h2 (l' : List ( Σ i, f i)) :
List.map (fun i => i.1) (List.insertionSort (fun i j => le1 i.fst j.fst) l') =
List.insertionSort le1 (List.map (fun i => i.1) l') := by
induction l' with
| nil =>
simp [HepLean.List.orderedInsertEquiv]
| cons i l' ih' =>
simp only [List.insertionSort, List.unzip_snd]
simp only [List.unzip_snd] at h2'
rw [h2']
congr
rw [HepLean.List.orderedInsertEquiv_congr _ _ _ (h2 _)]
simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
Fin.cast_trans, Fin.coe_cast]
have h3 : (List.insertionSort le1 (List.map (fun i => i.1) (liftM f l (fun i => a i.succ)))) =
List.insertionSort le1 l := by
congr
have h3' (l : List I) (a : Π (i : Fin l.length), f (l.get i)) :
List.map (fun i => i.1) (liftM f l a) = l := by
induction l with
| nil => rfl
| cons i l ih' =>
simp only [liftM, List.length_cons, Fin.zero_eta, Prod.mk.eta,
List.unzip_snd, List.map_cons, List.cons.injEq, true_and]
simpa using ih' _
rw [h3']
rw [HepLean.List.orderedInsertEquiv_congr _ _ _ h3]
simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
Fin.cast_trans, Fin.cast_eq_self, Fin.coe_cast]
lemma insertionSort_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(le1 : I → I → Prop) [DecidableRel le1](l : List I) (a : (i : Fin l.length) → f (l.get i))
:
List.insertionSort (fun i j => le1 i.fst j.fst) (liftM f l a) =
liftM f (List.insertionSort le1 l)
(Equiv.piCongr (HepLean.List.insertionSortEquiv le1 l) (fun i => (Equiv.cast (by
congr 1
rw [← HepLean.List.insertionSortEquiv_get]
simp))) a) := by
let l1 := List.insertionSort (fun i j => le1 i.fst j.fst) (liftM f l a)
let l2 := liftM f (List.insertionSort le1 l)
(Equiv.piCongr (HepLean.List.insertionSortEquiv le1 l) (fun i => (Equiv.cast (by
congr 1
rw [← HepLean.List.insertionSortEquiv_get]
simp))) a)
change l1 = l2
have hlen : l1.length = l2.length := by
simp [l1, l2]
have hget : l1.get = l2.get ∘ Fin.cast hlen := by
rw [← HepLean.List.insertionSortEquiv_get]
rw [liftM_get, liftM_get]
funext i
rw [insertionSortEquiv_liftM]
simp only [ Function.comp_apply, Equiv.symm_trans_apply,
OrderIso.toEquiv_symm, Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
Fin.cast_trans, Fin.cast_eq_self, id_eq, eq_mpr_eq_cast, Fin.coe_cast, Sigma.mk.inj_iff]
apply And.intro
· have h1 := congrFun (HepLean.List.insertionSortEquiv_get (r := le1) l) (Fin.cast (by simp) i)
rw [← h1]
simp
· simp [Equiv.piCongr]
exact (cast_heq _ _).symm
apply List.ext_get hlen
rw [hget]
simp
end
end Wick

View file

@ -26,19 +26,23 @@ namespace Wick
noncomputable section
class SuperCommuteCenterMap {A : Type} [Semiring A] [Algebra A]
(q : I → Fin 2) (F : FreeAlgebra I →ₐ[] A) : Prop where
prop : ∀ i j, F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) ∈ Subalgebra.center A
dif_grade : ∀ i j, q i ≠ q j → F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) = 0
namespace SuperCommuteCenterMap
variable {I : Type} {A : Type} [Semiring A] [Algebra A]
(f : FreeAlgebra I →ₐ[] A) (q : I → Fin 2) [SuperCommuteCenterMap q f]
class OperatorMap {A : Type} [Semiring A] [Algebra A]
(q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (F : FreeAlgebra I →ₐ[] A) : Prop where
superCommute_mem_center : ∀ i j, F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) ∈ Subalgebra.center A
superCommute_diff_grade_zero : ∀ i j, q i ≠ q j → F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) = 0
superCommute_ordered_zero : ∀ i j, ∀ a b,
F (koszulOrder le1 q (a * superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j) * b)) = 0
lemma ofList_fst (i j : I) :
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι j)) ∈ Subalgebra.center A := by
have h1 : f (superCommute q (ofList [i] xa) (FreeAlgebra.ι j)) =
xa • f (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) := by
namespace OperatorMap
variable {A : Type} [Semiring A] [Algebra A] {q : I → Fin 2} {le1 : I → I → Prop}
[DecidableRel le1] (F : FreeAlgebra I →ₐ[] A)
lemma superCommute_ofList_singleton_ι_center [OperatorMap q le1 F] (i j :I) :
F (superCommute q (ofList [i] xa) (FreeAlgebra.ι j)) ∈ Subalgebra.center A := by
have h1 : F (superCommute q (ofList [i] xa) (FreeAlgebra.ι j)) =
xa • F (superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j)) := by
rw [← map_smul]
congr
rw [ofList_eq_smul_one, ofList_singleton]
@ -46,31 +50,23 @@ lemma ofList_fst (i j : I) :
rfl
rw [h1]
refine Subalgebra.smul_mem (Subalgebra.center A) ?_ xa
exact prop i j
exact superCommute_mem_center (le1 := le1) i j
lemma ofList_freeAlgebraMap {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (c : (Σ i, f i)) (x : )
{A : Type} [Semiring A] [Algebra A] (F : FreeAlgebra (Σ i, f i) →ₐ[] A)
[SuperCommuteCenterMap (fun i => q i.1) F] (b : I) :
F ((superCommute fun i => q i.fst) (ofList [c] x) ((freeAlgebraMap f) (FreeAlgebra.ι b)))
∈ Subalgebra.center A := by
rw [freeAlgebraMap_ι]
rw [map_sum, map_sum]
refine Subalgebra.sum_mem (Subalgebra.center A) ?h
intro n hn
exact ofList_fst F (fun i => q i.fst) c ⟨b, n⟩
end SuperCommuteCenterMap
end OperatorMap
lemma superCommuteTake_superCommuteCenterMap {I : Type} (q : I → Fin 2) (lb : List I) (xa xb : ) (n : )
lemma superCommuteTake_operatorMap {I : Type} (q : I → Fin 2)
(le1 : I → I → Prop) [DecidableRel le1]
(lb : List I) (xa xb : ) (n : )
(hn : n < lb.length) {A : Type} [Semiring A] [Algebra A] (f : FreeAlgebra I →ₐ[] A)
[SuperCommuteCenterMap q f] (i : I) :
[OperatorMap q le1 f] (i : I) :
f (superCommuteTake q [i] lb xa xb n hn) =
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι (lb.get ⟨n, hn⟩)))
* (superCommuteCoef q [i] (List.take n lb) •
f (ofList (List.eraseIdx lb n) xb)) := by
have hn : f ((superCommute q) (ofList [i] xa) (FreeAlgebra.ι (lb.get ⟨n, hn⟩))) ∈
Subalgebra.center A := SuperCommuteCenterMap.ofList_fst f q i (lb.get ⟨n, hn⟩)
Subalgebra.center A := OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) f i (lb.get ⟨n, hn⟩)
rw [Subalgebra.mem_center_iff] at hn
rw [superCommuteTake, map_mul, map_mul, map_smul, hn, mul_assoc, smul_mul_assoc,
← map_mul, ← ofList_pair]
@ -79,11 +75,12 @@ lemma superCommuteTake_superCommuteCenterMap {I : Type} (q : I → Fin 2) (lb :
· exact one_mul xb
lemma superCommuteTakeM_F {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
lemma superCommuteTakeM_operatorMap {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (c : (Σ i, f i)) (r : List I) (x y : ) (n : )
(hn : n < r.length)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
{A : Type} [Semiring A] [Algebra A] (F : FreeAlgebra (Σ i, f i) →ₐ[] A)
[SuperCommuteCenterMap (fun i => q i.1) F] :
[OperatorMap (fun i => q i.1) le1 F] :
F (superCommuteTakeM q [c] r x y n hn) = superCommuteCoefM q [c] (List.take n r) •
(F (superCommute (fun i => q i.1) (ofList [c] x) (freeAlgebraMap f (FreeAlgebra.ι (r.get ⟨n, hn⟩))))
* F (ofListM f (List.eraseIdx r n) y)) := by
@ -92,8 +89,12 @@ lemma superCommuteTakeM_F {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
congr
rw [map_mul, map_mul]
have h1 : F ((superCommute fun i => q i.fst) (ofList [c] x) ((freeAlgebraMap f) (FreeAlgebra.ι (r.get ⟨n, hn⟩))))
∈ Subalgebra.center A :=
SuperCommuteCenterMap.ofList_freeAlgebraMap q c x F (r.get ⟨n, hn⟩)
∈ Subalgebra.center A := by
rw [freeAlgebraMap_ι]
rw [map_sum, map_sum]
refine Subalgebra.sum_mem _ ?_
intro n
exact fun a => OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) F c _
rw [Subalgebra.mem_center_iff] at h1
rw [h1, mul_assoc, ← map_mul]
congr
@ -108,7 +109,7 @@ lemma superCommute_koszulOrder_le_ofList {I : Type}
(le1 :I → I → Prop) [DecidableRel le1] [IsTotal I le1] [IsTrans I le1]
(i : I)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ A) [SuperCommuteCenterMap q F] :
(F : FreeAlgebra I →ₐ A) [OperatorMap q le1 F] :
F ((superCommute q (FreeAlgebra.ι i) (koszulOrder le1 q (ofList r x)))) =
∑ n : Fin r.length, (superCommuteCoef q [r.get n] (r.take n)) •
(F (((superCommute q) (ofList [i] 1)) (FreeAlgebra.ι (r.get n))) *
@ -118,7 +119,7 @@ lemma superCommute_koszulOrder_le_ofList {I : Type}
conv_lhs =>
enter [2, 2]
intro n
rw [superCommuteTake_superCommuteCenterMap]
rw [superCommuteTake_operatorMap (le1 := le1)]
enter [1, 2, 2, 2]
change ((List.insertionSort le1 r).get ∘ (HepLean.List.insertionSortEquiv le1 r)) n
rw [HepLean.List.insertionSort_get_comp_insertionSortEquiv]
@ -135,7 +136,7 @@ lemma superCommute_koszulOrder_le_ofList {I : Type}
congr
funext n
by_cases hq : q i ≠ q (r.get n)
· have hn := SuperCommuteCenterMap.dif_grade (q := q) (F := F) i (r.get n) hq
· have hn := OperatorMap.superCommute_diff_grade_zero (q := q) (F := F) le1 i (r.get n) hq
conv_lhs =>
enter [2, 1]
rw [ofList_singleton, hn]
@ -151,9 +152,9 @@ lemma superCommute_koszulOrder_le_ofList {I : Type}
lemma koszulOrder_of_le_all_ofList {I : Type}
(q : I → Fin 2) (r : List I) (x : ) (le1 : I → I → Prop) [DecidableRel le1]
(i : I) (hi : ∀ j, le1 j i)
(i : I)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ A) [SuperCommuteCenterMap q F] :
(F : FreeAlgebra I →ₐ A) [OperatorMap q le1 F] :
F (koszulOrder le1 q (ofList r x * FreeAlgebra.ι i))
= superCommuteCoef q [i] r • F (koszulOrder le1 q (FreeAlgebra.ι i * ofList r x)) := by
conv_lhs =>
@ -168,14 +169,26 @@ lemma koszulOrder_of_le_all_ofList {I : Type}
rw [map_smul]
rw [← neg_smul]
rw [map_smul, map_smul, map_smul]
sorry
conv_lhs =>
rhs
rhs
rw [superCommute_ofList_sum]
rw [map_sum, map_sum]
dsimp [superCommuteTake]
rw [ofList_singleton]
rhs
intro n
rw [Algebra.smul_mul_assoc, Algebra.smul_mul_assoc]
rw [map_smul, map_smul]
rw [OperatorMap.superCommute_ordered_zero ]
simp
rw [ofList_singleton]
lemma le_all_mul_koszulOrder_ofList {I : Type}
(q : I → Fin 2) (r : List I) (x : ) (le1 : I → I→ Prop) [DecidableRel le1]
(i : I) (hi : ∀ (j : I), le1 j i)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ A) [SuperCommuteCenterMap q F] :
(F : FreeAlgebra I →ₐ A) [OperatorMap q le1 F] :
F (FreeAlgebra.ι i * koszulOrder le1 q (ofList r x)) =
F ((koszulOrder le1 q) (FreeAlgebra.ι i * ofList r x)) +
F (((superCommute q) (ofList [i] 1)) ((koszulOrder le1 q) (ofList r x))) := by
@ -193,14 +206,13 @@ lemma le_all_mul_koszulOrder_ofList {I : Type}
rw [smul_smul]
rw [superCommuteCoef_mul_self]
simp [ofList_singleton]
exact fun j => hi j
· rw [map_smul, map_smul]
· exact fun j => hi j
def superCommuteCenterOrder {I : Type}
(q : I → Fin 2) (r : List I) (i : I)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ A) [SuperCommuteCenterMap q F]
(F : FreeAlgebra I →ₐ[] A)
(n : Option (Fin r.length)) : A :=
match n with
| none => 1
@ -210,7 +222,7 @@ def superCommuteCenterOrder {I : Type}
lemma superCommuteCenterOrder_none {I : Type}
(q : I → Fin 2) (r : List I) (i : I)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ A) [SuperCommuteCenterMap q F] :
(F : FreeAlgebra I →ₐ[] A) :
superCommuteCenterOrder q r i F none = 1 := by
simp [superCommuteCenterOrder]
@ -221,7 +233,7 @@ lemma le_all_mul_koszulOrder_ofList_expand {I : Type}
[IsTotal I le1] [IsTrans I le1]
(i : I) (hi : ∀ (j : I), le1 j i)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra I →ₐ A) [SuperCommuteCenterMap q F] :
(F : FreeAlgebra I →ₐ[] A) [OperatorMap q le1 F] :
F (FreeAlgebra.ι i * koszulOrder le1 q (ofList r x)) =
∑ n, superCommuteCenterOrder q r i F n * F ((koszulOrder le1 q) (ofList (optionEraseZ r i n) x)) := by
rw [le_all_mul_koszulOrder_ofList]
@ -244,7 +256,7 @@ lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i,
[IsTotal (Σ i, f i) le1] [IsTrans (Σ i, f i) le1]
(i : (Σ i, f i)) (hi : ∀ (j : (Σ i, f i)), le1 j i)
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [SuperCommuteCenterMap (fun i => q i.1) F] :
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F] :
F (ofList [i] 1 * koszulOrder le1 (fun i => q i.1) (ofListM f r x)) =
F ((koszulOrder le1 fun i => q i.fst) (ofList [i] 1 * ofListM f r x)) +
∑ n : (Fin r.length), superCommuteCoef q [r.get n] (List.take (↑n) r) •
@ -259,9 +271,9 @@ lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i,
rw [ofList_singleton, koszulOrder_ι]
| r0 :: r =>
rw [ofListM_expand, map_sum, Finset.mul_sum, map_sum]
let e1 (a : (i : Fin (r0 :: r).length) → f ((r0 :: r).get i)) :
Option (Fin (liftM f (r0 :: r) a).length) ≃ Option (Fin (r0 :: r).length) :=
Equiv.optionCongr (Fin.castOrderIso (liftM_length f (r0 :: r) a)).toEquiv
let e1 (a : CreatAnnilateSect f (r0 :: r)) :
Option (Fin a.toList.length) ≃ Option (Fin (r0 :: r).length) :=
Equiv.optionCongr (Fin.castOrderIso (CreatAnnilateSect.toList_length a)).toEquiv
conv_lhs =>
rhs
intro a
@ -283,28 +295,22 @@ lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i,
rw [ofList_cons_eq_ofList]
· congr
funext n
rw [← (liftMCongrEquiv _ _ _ n).symm.sum_comp]
rw [← (CreatAnnilateSect.extractEquiv n).symm.sum_comp]
simp only [List.get_eq_getElem, List.length_cons, Equiv.optionCongr_symm, OrderIso.toEquiv_symm,
Fin.symm_castOrderIso, Equiv.optionCongr_apply, RelIso.coe_fn_toEquiv, Option.map_some',
Fin.castOrderIso_apply, Algebra.smul_mul_assoc, e1]
erw [Finset.sum_product]
have h1 (a0 : f (r0 :: r)[↑n]) (a : (i : Fin r.length) → f (r0 :: r)[↑(n.succAbove i)]):
superCommuteCenterOrder (fun i => q i.fst) (liftM f (r0 :: r) ((liftMCongrEquiv f r0 r n).symm (a0, a))) i F
have h1 (a0 : f (r0 :: r)[↑n]) (a : CreatAnnilateSect f ((r0 :: r).eraseIdx ↑n)):
superCommuteCenterOrder (fun i => q i.fst) ((CreatAnnilateSect.extractEquiv n).symm (a0, a)).toList i F
(some (Fin.cast (by simp) n)) = superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) (r0 :: r)) •
F (((superCommute fun i => q i.fst) (ofList [i] 1)) (FreeAlgebra.ι ⟨(r0 :: r).get n, a0⟩)) := by
simp only [superCommuteCenterOrder, List.get_eq_getElem, List.length_cons, Fin.coe_cast]
have hx : (liftM f (r0 :: r) ((liftMCongrEquiv f r0 r n).symm (a0, a)))[n.1] =
⟨(r0 :: r).get n, a0⟩ := by
trans (liftM f (r0 :: r) ((liftMCongrEquiv f r0 r n).symm (a0, a))).get (Fin.cast (by simp) n)
· simp only [List.get_eq_getElem, List.length_cons, Fin.coe_cast]
rw [liftM_get]
simp [liftMCongrEquiv]
erw [hx]
erw [CreatAnnilateSect.extractEquiv_symm_toList_get_same]
have hsc : superCommuteCoef (fun i => q i.fst) [⟨(r0 :: r).get n, a0⟩]
(List.take (↑n) (liftM f (r0 :: r) ((liftMCongrEquiv f r0 r n).symm (a0, a)))) =
(List.take (↑n) ((CreatAnnilateSect.extractEquiv n).symm (a0, a)).toList) =
superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) ((r0 :: r))) := by
simp only [superCommuteCoef, List.get_eq_getElem, List.length_cons, Fin.isValue,
liftM_grade_take]
CreatAnnilateSect.toList_grade_take]
rfl
erw [hsc]
rfl
@ -318,19 +324,18 @@ lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i,
rhs
intro a0
rw [← Finset.mul_sum]
have hl (n : Fin (r0 :: r).length) (a0 : f (r0 :: r)[↑n]) (a : (i : Fin r.length) → f (r0 :: r)[↑(n.succAbove i)]):
(ofList (optionEraseZ (liftM f (r0 :: r) ((liftMCongrEquiv f r0 r n).symm (a0, a))) i (some (Fin.cast (by simp ) n))) x)
= ofList ((liftM f ((r0 :: r).eraseIdx ↑n) ((listMEraseEquiv q n).symm a))) x := by
simp only [optionEraseZ, List.get_eq_getElem, List.length_cons, Fin.coe_cast]
simp [liftMCongrEquiv]
congr
sorry
conv_lhs =>
rhs
intro a0
enter [2, 2]
intro a
erw [hl n a0 a]
simp [optionEraseZ]
rhs
rhs
lhs
rw [← CreatAnnilateSect.eraseIdx_toList]
erw [CreatAnnilateSect.extractEquiv_symm_eraseIdx]
rw [← Finset.sum_mul]
conv_lhs =>
lhs
@ -338,7 +343,6 @@ lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i,
erw [← map_sum, ← map_sum, ← ofListM_singleton_one]
conv_lhs =>
rhs
erw [← (listMEraseEquiv q n).sum_comp]
rw [← map_sum, ← map_sum]
simp only [List.get_eq_getElem, List.length_cons, Equiv.symm_apply_apply,
Algebra.smul_mul_assoc]

View file

@ -87,10 +87,6 @@ def koszulSign {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin
| a :: l => koszulSignInsert r q a l * koszulSign r q l
def natTestQ : → Fin 2 := fun n => if n % 2 = 0 then 0 else 1
def natTest3 : × × → Fin 2 := fun ⟨a, b, c⟩ => if a % 2 = 0 then 0 else 1
#eval List.insertionSort (fun i j => i.2 ≤ j.2) [(1, 1, 0), (1, 0, 3)]
#eval koszulSign (fun i j => i.2 ≤ j.2) natTest3 [ (0, 0, 2), (1, 1, 0), (1, 1, 3)]
lemma koszulSign_mul_self {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
(l : List I) : koszulSign r q l * koszulSign r q l = 1 := by

View file

@ -275,12 +275,5 @@ lemma ofListM_ofList_superCommute' {I : Type}
· simp [hq, superCommuteCoef]
· simp [hq]
lemma koszulOrder_superCommute_le {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
(i j : I) (hle : r i j) (a1 a2 : FreeAlgebra I) :
koszulOrder r q (a1 * superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j) * a2) =
0 := by
sorry
end
end Wick

View file

@ -48,10 +48,10 @@ lemma superCommute_ofList_ofListM {I : Type} {f : I → Type} [∀ i, Fintype (
funext a
rw [superCommute_ofList_ofList]
congr 1
· exact ofList_pair l (liftM f r a) x y
· exact ofList_pair l a.toList x y
congr 1
· simp
· exact ofList_pair (liftM f r a) l y x
· exact ofList_pair a.toList l y x
· rw [ofList_pair]
simp only [neg_mul]
@ -124,7 +124,7 @@ lemma superCommuteM_ofList_cons {I : Type} {f : I → Type} [∀ i, Fintype (f i
rw [ofListM_expand]
rw [Finset.mul_sum]
rw [map_sum]
trans ∑ n, ∑ j : f b1, ((superCommute fun i => q i.fst) (ofList l x)) (( FreeAlgebra.ι ⟨b1, j⟩) * ofList (liftM f r n) y)
trans ∑ (n : CreatAnnilateSect f r), ∑ j : f b1, ((superCommute fun i => q i.fst) (ofList l x)) (( FreeAlgebra.ι ⟨b1, j⟩) * ofList n.toList y)
· apply congrArg
funext n
rw [← map_sum]
@ -152,7 +152,7 @@ lemma superCommuteM_ofList_cons {I : Type} {f : I → Type} [∀ i, Fintype (f i
rw [← Finset.sum_add_distrib]
congr
funext b
trans ((superCommute fun i => q i.fst) (ofList l x)) (ofList (⟨b1, b⟩ :: liftM f r n) y)
trans ((superCommute fun i => q i.fst) (ofList l x)) (ofList (⟨b1, b⟩ :: n.toList) y)
· congr
rw [ofList_cons_eq_ofList]
rw [ofList_singleton]