feat: Contractions with pauli matrices

This commit is contained in:
jstoobysmith 2024-10-23 15:19:41 +00:00
parent ca55da6a34
commit 685c1b293c
4 changed files with 940 additions and 81 deletions

View file

@ -12,6 +12,8 @@ import HepLean.Tensors.Tree.NodeIdentities.PermContr
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
import HepLean.Tensors.ComplexLorentz.Basis
import LLMLean
/-!
## Lemmas related to complex Lorentz tensors.
@ -32,86 +34,6 @@ noncomputable section
namespace Fermion
/-- The vectors forming a basis of
`complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down])`.
Not proved it is a basis yet. -/
def coCoBasis (b : Fin 4 × Fin 4) :
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]) :=
PiTensorProduct.tprod (fun i => Fin.cases (Lorentz.complexCoBasisFin4 b.1)
(fun i => Fin.cases (Lorentz.complexCoBasisFin4 b.2) (fun i => i.elim0) i) i)
lemma coCoBasis_eval (e1 e2 : Fin (complexLorentzTensor.repDim Color.down)) (i : Fin 4 × Fin 4) :
complexLorentzTensor.castFin0ToField
((complexLorentzTensor.evalMap 0 e2) ((complexLorentzTensor.evalMap 0 e1) (coCoBasis i))) =
if i = (e1, e2) then 1 else 0 := by
simp only [coCoBasis]
have h1 := @TensorSpecies.evalMap_tprod complexLorentzTensor _ (![Color.down, Color.down]) 0 e1
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Functor.id_obj,
OverColor.mk_hom, Function.comp_apply, cons_val_zero, Fin.cases_zero, Fin.cases_succ] at h1
erw [h1]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Functor.id_obj, OverColor.mk_hom,
Fin.cases_zero, Fin.cases_succ, _root_.map_smul, smul_eq_mul]
erw [TensorSpecies.evalMap_tprod]
simp only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.succAbove_zero, Functor.id_obj,
OverColor.mk_hom, Function.comp_apply, Fin.succ_zero_eq_one, cons_val_one, head_cons,
Fin.cases_zero, Fin.zero_succAbove, Fin.cases_succ, _root_.map_smul, smul_eq_mul]
erw [complexLorentzTensor.castFin0ToField_tprod]
simp only [Fin.isValue, mul_one]
change (Lorentz.complexCoBasisFin4.repr (Lorentz.complexCoBasisFin4 i.1)) e1 *
(Lorentz.complexCoBasisFin4.repr (Lorentz.complexCoBasisFin4 i.2)) e2 = _
simp only [Basis.repr_self]
rw [Finsupp.single_apply, Finsupp.single_apply]
rw [@ite_zero_mul_ite_zero]
simp only [mul_one]
congr
simp_all only [Fin.isValue, Fin.succAbove_zero, Fin.zero_succAbove, eq_iff_iff]
obtain ⟨fst, snd⟩ := i
simp_all only [Fin.isValue, Prod.mk.injEq]
lemma coMetric_expand : {Lorentz.coMetric | μ ν}ᵀ.tensor =
coCoBasis (0, 0) - coCoBasis (1, 1) - coCoBasis (2, 2) - coCoBasis (3, 3) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Functor.id_obj, Fin.isValue]
erw [Lorentz.coMetric_apply_one, Lorentz.coMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, coCoBasis]
simp only [Nat.reduceAdd, Nat.succ_eq_add_one, OverColor.mk_hom, Functor.id_obj, Fin.isValue,
Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
/-- The covariant Lorentz metric is symmetric. -/
lemma coMetric_symm : {Lorentz.coMetric | μ ν = Lorentz.coMetric | ν μ}ᵀ := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, perm_tensor]
rw [coMetric_expand]
simp only [TensorSpecies.F, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, Fin.isValue,
map_sub]
simp only [coCoBasis, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, OverColor.mk_hom,
Lorentz.complexCoBasisFin4, Fin.isValue, Basis.coe_reindex, Function.comp_apply]
congr 1
congr 1
congr 1
all_goals
erw [OverColor.lift.map_tprod]
congr 1
funext i
match i with
| (0 : Fin 2) => rfl
| (1 : Fin 2) => rfl
lemma coMetric_0_0_field : {Lorentz.coMetric | 0 0}ᵀ.field = 1 := by
rw [field, eval_tensor, eval_tensor, coMetric_expand]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue,
Function.comp_apply, Fin.succ_zero_eq_one, cons_val_one, head_cons, Fin.ofNat'_zero,
cons_val_zero, Functor.id_obj, OverColor.mk_hom, map_sub]
rw [coCoBasis_eval, coCoBasis_eval, coCoBasis_eval, coCoBasis_eval]
simp only [Fin.isValue, Prod.mk_zero_zero, ↓reduceIte, Prod.mk_one_one, one_ne_zero, sub_zero,
Prod.mk_eq_zero, Fin.reduceEq, and_self]
set_option maxRecDepth 20000 in
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
@ -188,6 +110,785 @@ lemma antiSymm_add_self {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
apply TensorTree.add_tensor_eq_snd
rw [neg_tensor_eq hA, neg_tensor_eq (neg_perm _ _), neg_neg]
/-!
## The contraction of Pauli matrices with Pauli matrices
And related results.
-/
open complexLorentzTensor
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘ finSumFinEquiv.symm
lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor
= basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [prod_tensor_eq_fst (leftMetric_expand_tree)]
rw [prod_tensor_eq_snd (rightMetric_expand_tree)]
rw [prod_add_both]
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_tensor_eq <| prod_smul _ _ _]
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_smul _ _ _]
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_eq_one _ _ (by simp)]
rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| prod_basisVector_tree _ _]
rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_basisVector_tree _ _]
rw [← add_assoc]
simp only [add_tensor, smul_tensor, tensorNode_tensor]
change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
+- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)
congr 1
congr 1
congr 1
all_goals
congr
funext x
fin_cases x <;> rfl
def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 1)
abbrev pauliMatrixContrMap {n : } (c : Fin n → complexLorentzTensor.C) := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
lemma pauliMatrix_contr_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
(contr i j h (TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor = (
(contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
rw [contr_tensor_eq <| prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
rw [contr_tensor_eq <| prod_add _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| prod_add _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| prod_add _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| prod_add _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
/- Moving smuls. -/
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
<| add_tensor_eq_snd <| prod_smul _ _ _]
/- Moving contr over add. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contr over smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
contr_smul _ _]
rfl
lemma pauliMatrix_contr_down_0 :
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_pos _ rfl]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _ rfl]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_neg _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_1 : (contr 0 1 rfl
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 1)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_pos _ rfl]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_pos _ rfl]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_neg _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_2 : (contr 0 1 rfl
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 2)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_neg _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_3 : (contr 0 1 rfl
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ (- 1 : ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_pos _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
def pauliMatrixContrPauliMatrixMap := ((Sum.elim
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 1)
![Color.up, Color.upL, Color.upR] ∘
⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 2)
lemma pauliMatrix_contr_lower_0_0_0 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_neg _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_0_1_1 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_neg _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_0_1 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_pos _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_neg _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_1_0 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_pos _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_neg _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_0_1 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_neg _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_1_0 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_neg _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_0_0 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_pos _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_1_1 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [pauliMatrix_contr_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree_neg _ ]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree_neg _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree_pos _]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
/-
lemma pauliMatrix_lower :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
- I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
- basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
rw [contr_tensor_eq <| prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
sorry -/
lemma pauliMatrix_contract_pauliMatrix :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
= basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
- basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
- basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
end Fermion
end