Merge pull request #97 from HEPLean/Tensors-V2
feat: Add general tensor definitions
This commit is contained in:
commit
689ce73a2b
9 changed files with 845 additions and 2192 deletions
826
HepLean/SpaceTime/LorentzTensor/Basic.lean
Normal file
826
HepLean/SpaceTime/LorentzTensor/Basic.lean
Normal file
|
@ -0,0 +1,826 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.LinearAlgebra.PiTensorProduct
|
||||
import Mathlib.RepresentationTheory.Basic
|
||||
/-!
|
||||
|
||||
# Structure of Lorentz Tensors
|
||||
|
||||
In this file we set up the basic structures we will use to define Lorentz tensors.
|
||||
|
||||
## References
|
||||
|
||||
-- For modular operads see: [Raynor][raynor2021graphical]
|
||||
|
||||
-/
|
||||
|
||||
noncomputable section
|
||||
|
||||
open TensorProduct
|
||||
|
||||
variable {R : Type} [CommSemiring R]
|
||||
|
||||
/-- An initial structure specifying a tensor system (e.g. a system in which you can
|
||||
define real Lorentz tensors). -/
|
||||
structure PreTensorStructure (R : Type) [CommSemiring R] where
|
||||
/-- The allowed colors of indices.
|
||||
For example for a real Lorentz tensor these are `{up, down}`. -/
|
||||
Color : Type
|
||||
/-- To each color we associate a module. -/
|
||||
ColorModule : Color → Type
|
||||
/-- A map taking every color to its dual color. -/
|
||||
τ : Color → Color
|
||||
/-- The map `τ` is an involution. -/
|
||||
τ_involutive : Function.Involutive τ
|
||||
/-- Each `ColorModule` has the structure of an additive commutative monoid. -/
|
||||
colorModule_addCommMonoid : ∀ μ, AddCommMonoid (ColorModule μ)
|
||||
/-- Each `ColorModule` has the structure of a module over `R`. -/
|
||||
colorModule_module : ∀ μ, Module R (ColorModule μ)
|
||||
/-- The contraction of a vector with a vector with dual color. -/
|
||||
contrDual : ∀ μ, ColorModule μ ⊗[R] ColorModule (τ μ) →ₗ[R] R
|
||||
|
||||
namespace PreTensorStructure
|
||||
|
||||
variable (𝓣 : PreTensorStructure R)
|
||||
|
||||
variable {d : ℕ} {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
|
||||
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color}
|
||||
{cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||||
|
||||
instance : AddCommMonoid (𝓣.ColorModule μ) := 𝓣.colorModule_addCommMonoid μ
|
||||
|
||||
instance : Module R (𝓣.ColorModule μ) := 𝓣.colorModule_module μ
|
||||
|
||||
/-- The type of tensors given a map from an indexing set `X` to the type of colors,
|
||||
specifying the color of that index. -/
|
||||
def Tensor (c : X → 𝓣.Color) : Type := ⨂[R] x, 𝓣.ColorModule (c x)
|
||||
|
||||
instance : AddCommMonoid (𝓣.Tensor cX) :=
|
||||
PiTensorProduct.instAddCommMonoid fun i => 𝓣.ColorModule (cX i)
|
||||
|
||||
instance : Module R (𝓣.Tensor cX) := PiTensorProduct.instModule
|
||||
|
||||
/-- Equivalence of `ColorModule` given an equality of colors. -/
|
||||
def colorModuleCast (h : μ = ν) : 𝓣.ColorModule μ ≃ₗ[R] 𝓣.ColorModule ν where
|
||||
toFun x := Equiv.cast (congrArg 𝓣.ColorModule h) x
|
||||
invFun x := (Equiv.cast (congrArg 𝓣.ColorModule h)).symm x
|
||||
map_add' x y := by
|
||||
subst h
|
||||
rfl
|
||||
map_smul' x y := by
|
||||
subst h
|
||||
rfl
|
||||
left_inv x := Equiv.symm_apply_apply (Equiv.cast (congrArg 𝓣.ColorModule h)) x
|
||||
right_inv x := Equiv.apply_symm_apply (Equiv.cast (congrArg 𝓣.ColorModule h)) x
|
||||
|
||||
lemma tensorProd_piTensorProd_ext {M : Type} [AddCommMonoid M] [Module R M]
|
||||
{f g : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY →ₗ[R] M}
|
||||
(h : ∀ p q, f (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)
|
||||
= g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)) : f = g := by
|
||||
apply TensorProduct.ext'
|
||||
refine fun x ↦
|
||||
PiTensorProduct.induction_on' x ?_ (by
|
||||
intro a b hx hy y
|
||||
simp [map_add, add_tmul, hx, hy])
|
||||
intro rx fx
|
||||
refine fun y ↦
|
||||
PiTensorProduct.induction_on' y ?_ (by
|
||||
intro a b hx hy
|
||||
simp at hx hy
|
||||
simp [map_add, tmul_add, hx, hy])
|
||||
intro ry fy
|
||||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul]
|
||||
apply congrArg
|
||||
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
|
||||
exact congrArg (HSMul.hSMul rx) (h fx fy)
|
||||
|
||||
/-!
|
||||
|
||||
## Mapping isomorphisms
|
||||
|
||||
-/
|
||||
|
||||
/-- An linear equivalence of tensor spaces given a color-preserving equivalence of indexing sets. -/
|
||||
def mapIso {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = d ∘ e) :
|
||||
𝓣.Tensor c ≃ₗ[R] 𝓣.Tensor d :=
|
||||
(PiTensorProduct.reindex R _ e) ≪≫ₗ
|
||||
(PiTensorProduct.congr (fun y => 𝓣.colorModuleCast (by rw [h]; simp)))
|
||||
|
||||
lemma mapIso_trans_cond {e : X ≃ Y} {e' : Y ≃ Z} (h : cX = cY ∘ e) (h' : cY = cZ ∘ e') :
|
||||
cX = cZ ∘ (e.trans e') := by
|
||||
funext a
|
||||
subst h h'
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma mapIso_trans (e : X ≃ Y) (e' : Y ≃ Z) (h : cX = cY ∘ e) (h' : cY = cZ ∘ e') :
|
||||
(𝓣.mapIso e h ≪≫ₗ 𝓣.mapIso e' h') = 𝓣.mapIso (e.trans e') (𝓣.mapIso_trans_cond h h') := by
|
||||
refine LinearEquiv.toLinearMap_inj.mp ?_
|
||||
apply PiTensorProduct.ext
|
||||
apply MultilinearMap.ext
|
||||
intro x
|
||||
simp only [mapIso, LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe,
|
||||
LinearEquiv.trans_apply, PiTensorProduct.reindex_tprod, Equiv.symm_trans_apply]
|
||||
change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
|
||||
((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cY x)) e')
|
||||
((PiTensorProduct.congr fun y => 𝓣.colorModuleCast _) _)) =
|
||||
(PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
|
||||
((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cX x)) (e.trans e')) _)
|
||||
rw [PiTensorProduct.congr_tprod, PiTensorProduct.reindex_tprod,
|
||||
PiTensorProduct.congr_tprod, PiTensorProduct.reindex_tprod, PiTensorProduct.congr]
|
||||
simp [colorModuleCast]
|
||||
|
||||
@[simp]
|
||||
lemma mapIso_mapIso (e : X ≃ Y) (e' : Y ≃ Z) (h : cX = cY ∘ e) (h' : cY = cZ ∘ e')
|
||||
(T : 𝓣.Tensor cX) :
|
||||
(𝓣.mapIso e' h') (𝓣.mapIso e h T) = 𝓣.mapIso (e.trans e') (𝓣.mapIso_trans_cond h h') T := by
|
||||
rw [← LinearEquiv.trans_apply, mapIso_trans]
|
||||
|
||||
@[simp]
|
||||
lemma mapIso_symm (e : X ≃ Y) (h : cX = cY ∘ e) :
|
||||
(𝓣.mapIso e h).symm = 𝓣.mapIso e.symm ((Equiv.eq_comp_symm e cY cX).mpr h.symm) := by
|
||||
refine LinearEquiv.toLinearMap_inj.mp ?_
|
||||
apply PiTensorProduct.ext
|
||||
apply MultilinearMap.ext
|
||||
intro x
|
||||
simp [mapIso, LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe,
|
||||
LinearEquiv.symm_apply_apply, PiTensorProduct.reindex_tprod]
|
||||
change (PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cX x)) e).symm
|
||||
((PiTensorProduct.congr fun y => 𝓣.colorModuleCast _).symm ((PiTensorProduct.tprod R) x)) =
|
||||
(PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
|
||||
((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cY x)) e.symm)
|
||||
((PiTensorProduct.tprod R) x))
|
||||
rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod, PiTensorProduct.congr_symm_tprod,
|
||||
LinearEquiv.symm_apply_eq, PiTensorProduct.reindex_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
simp only [colorModuleCast, Equiv.cast_symm, LinearEquiv.coe_symm_mk,
|
||||
Equiv.symm_symm_apply, LinearEquiv.coe_mk]
|
||||
rw [← Equiv.symm_apply_eq]
|
||||
simp only [Equiv.cast_symm, Equiv.cast_apply, cast_cast]
|
||||
apply cast_eq_iff_heq.mpr
|
||||
rw [Equiv.apply_symm_apply]
|
||||
|
||||
@[simp]
|
||||
lemma mapIso_refl : 𝓣.mapIso (Equiv.refl X) (rfl : cX = cX) = LinearEquiv.refl R _ := by
|
||||
refine LinearEquiv.toLinearMap_inj.mp ?_
|
||||
apply PiTensorProduct.ext
|
||||
apply MultilinearMap.ext
|
||||
intro x
|
||||
simp only [mapIso, Equiv.refl_symm, Equiv.refl_apply, PiTensorProduct.reindex_refl,
|
||||
LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe, LinearEquiv.trans_apply,
|
||||
LinearEquiv.refl_apply, LinearEquiv.refl_toLinearMap, LinearMap.id, LinearMap.coe_mk,
|
||||
AddHom.coe_mk, id_eq]
|
||||
change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _) ((PiTensorProduct.tprod R) x) = _
|
||||
rw [PiTensorProduct.congr_tprod]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma mapIso_tprod {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = d ∘ e)
|
||||
(f : (i : X) → 𝓣.ColorModule (c i)) : (𝓣.mapIso e h) (PiTensorProduct.tprod R f) =
|
||||
(PiTensorProduct.tprod R (fun i => 𝓣.colorModuleCast (by rw [h]; simp) (f (e.symm i)))) := by
|
||||
simp [mapIso]
|
||||
change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
|
||||
((PiTensorProduct.reindex R _ e) ((PiTensorProduct.tprod R) f)) = _
|
||||
rw [PiTensorProduct.reindex_tprod]
|
||||
exact PiTensorProduct.congr_tprod (fun y => 𝓣.colorModuleCast _) fun i => f (e.symm i)
|
||||
|
||||
/-!
|
||||
|
||||
## Pure tensors
|
||||
|
||||
This section is needed since: `PiTensorProduct.tmulEquiv` is not defined for dependent types.
|
||||
Hence we need to construct a version of it here.
|
||||
|
||||
-/
|
||||
|
||||
/-- The type of pure tensors, i.e. of the form `v1 ⊗ v2 ⊗ v3 ⊗ ...`. -/
|
||||
abbrev PureTensor (c : X → 𝓣.Color) := (x : X) → 𝓣.ColorModule (c x)
|
||||
|
||||
/-- A pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` constructed from a pure tensor
|
||||
in `𝓣.PureTensor cX` and a pure tensor in `𝓣.PureTensor cY`. -/
|
||||
def elimPureTensor (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY) : 𝓣.PureTensor (Sum.elim cX cY) :=
|
||||
fun x =>
|
||||
match x with
|
||||
| Sum.inl x => p x
|
||||
| Sum.inr x => q x
|
||||
|
||||
@[simp]
|
||||
lemma elimPureTensor_update_right (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY)
|
||||
(y : Y) (r : 𝓣.ColorModule (cY y)) : 𝓣.elimPureTensor p (Function.update q y r) =
|
||||
Function.update (𝓣.elimPureTensor p q) (Sum.inr y) r := by
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x =>
|
||||
change Function.update q y r x = _
|
||||
simp only [Function.update, Sum.inr.injEq, Sum.elim_inr]
|
||||
split_ifs
|
||||
rename_i h
|
||||
subst h
|
||||
simp_all only
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma elimPureTensor_update_left (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY)
|
||||
(x : X) (r : 𝓣.ColorModule (cX x)) : 𝓣.elimPureTensor (Function.update p x r) q =
|
||||
Function.update (𝓣.elimPureTensor p q) (Sum.inl x) r := by
|
||||
funext y
|
||||
match y with
|
||||
| Sum.inl y =>
|
||||
change (Function.update p x r) y = _
|
||||
simp only [Function.update, Sum.inl.injEq, Sum.elim_inl]
|
||||
split_ifs
|
||||
rename_i h
|
||||
subst h
|
||||
simp_all only
|
||||
rfl
|
||||
| Sum.inr y => rfl
|
||||
|
||||
/-- The projection of a pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` onto a pure tensor in
|
||||
`𝓣.PureTensor cX`. -/
|
||||
def inlPureTensor (p : 𝓣.PureTensor (Sum.elim cX cY)) : 𝓣.PureTensor cX := fun x => p (Sum.inl x)
|
||||
|
||||
/-- The projection of a pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` onto a pure tensor in
|
||||
`𝓣.PureTensor cY`. -/
|
||||
def inrPureTensor (p : 𝓣.PureTensor (Sum.elim cX cY)) : 𝓣.PureTensor cY := fun y => p (Sum.inr y)
|
||||
|
||||
@[simp]
|
||||
lemma inlPureTensor_update_left [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (x : X)
|
||||
(v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inl x))) :
|
||||
𝓣.inlPureTensor (Function.update f (Sum.inl x) v1) =
|
||||
Function.update (𝓣.inlPureTensor f) x v1 := by
|
||||
funext y
|
||||
simp [inlPureTensor, Function.update, Sum.inl.injEq, Sum.elim_inl]
|
||||
split
|
||||
next h =>
|
||||
subst h
|
||||
simp_all only
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma inrPureTensor_update_left [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (x : X)
|
||||
(v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inl x))) :
|
||||
𝓣.inrPureTensor (Function.update f (Sum.inl x) v1) = (𝓣.inrPureTensor f) := by
|
||||
funext x
|
||||
simp [inrPureTensor, Function.update]
|
||||
|
||||
@[simp]
|
||||
lemma inrPureTensor_update_right [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (y : Y)
|
||||
(v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inr y))) :
|
||||
𝓣.inrPureTensor (Function.update f (Sum.inr y) v1) =
|
||||
Function.update (𝓣.inrPureTensor f) y v1 := by
|
||||
funext y
|
||||
simp [inrPureTensor, Function.update, Sum.inl.injEq, Sum.elim_inl]
|
||||
split
|
||||
next h =>
|
||||
subst h
|
||||
simp_all only
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma inlPureTensor_update_right [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (y : Y)
|
||||
(v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inr y))) :
|
||||
𝓣.inlPureTensor (Function.update f (Sum.inr y) v1) = (𝓣.inlPureTensor f) := by
|
||||
funext x
|
||||
simp [inlPureTensor, Function.update]
|
||||
|
||||
/-- The multilinear map taking pure tensors a `𝓣.PureTensor cX` and a pure tensor in
|
||||
`𝓣.PureTensor cY`, and constructing a tensor in `𝓣.Tensor (Sum.elim cX cY))`. -/
|
||||
def elimPureTensorMulLin : MultilinearMap R (fun i => 𝓣.ColorModule (cX i))
|
||||
(MultilinearMap R (fun x => 𝓣.ColorModule (cY x)) (𝓣.Tensor (Sum.elim cX cY))) where
|
||||
toFun p := {
|
||||
toFun := fun q => PiTensorProduct.tprod R (𝓣.elimPureTensor p q)
|
||||
map_add' := fun m x v1 v2 => by
|
||||
simp [Sum.elim_inl, Sum.elim_inr]
|
||||
map_smul' := fun m x r v => by
|
||||
simp [Sum.elim_inl, Sum.elim_inr]}
|
||||
map_add' p x v1 v2 := by
|
||||
apply MultilinearMap.ext
|
||||
intro y
|
||||
simp
|
||||
map_smul' p x r v := by
|
||||
apply MultilinearMap.ext
|
||||
intro y
|
||||
simp
|
||||
|
||||
/-!
|
||||
|
||||
## tensorator
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: Replace with dependent type version of `MultilinearMap.domCoprod` when in Mathlib. -/
|
||||
/-- The multi-linear map taking a pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` and constructing
|
||||
a vector in `𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY`. -/
|
||||
def domCoprod : MultilinearMap R (fun x => 𝓣.ColorModule (Sum.elim cX cY x))
|
||||
(𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY) where
|
||||
toFun f := (PiTensorProduct.tprod R (𝓣.inlPureTensor f)) ⊗ₜ
|
||||
(PiTensorProduct.tprod R (𝓣.inrPureTensor f))
|
||||
map_add' f xy v1 v2:= by
|
||||
match xy with
|
||||
| Sum.inl x => simp [← TensorProduct.add_tmul]
|
||||
| Sum.inr y => simp [← TensorProduct.tmul_add]
|
||||
map_smul' f xy r p := by
|
||||
match xy with
|
||||
| Sum.inl x => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul]
|
||||
| Sum.inr y => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul]
|
||||
|
||||
/-- The linear map combining two tensors into a single tensor
|
||||
via the tensor product i.e. `v1 v2 ↦ v1 ⊗ v2`. -/
|
||||
def tensoratorSymm : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY →ₗ[R] 𝓣.Tensor (Sum.elim cX cY) := by
|
||||
refine TensorProduct.lift {
|
||||
toFun := fun a ↦
|
||||
PiTensorProduct.lift <|
|
||||
PiTensorProduct.lift (𝓣.elimPureTensorMulLin) a,
|
||||
map_add' := fun a b ↦ by simp
|
||||
map_smul' := fun r a ↦ by simp}
|
||||
|
||||
/-! TODO: Replace with dependent type version of `PiTensorProduct.tmulEquiv` when in Mathlib. -/
|
||||
/-- Splitting a tensor in `𝓣.Tensor (Sum.elim cX cY)` into the tensor product of two tensors. -/
|
||||
def tensorator : 𝓣.Tensor (Sum.elim cX cY) →ₗ[R] 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY :=
|
||||
PiTensorProduct.lift 𝓣.domCoprod
|
||||
|
||||
/-- An equivalence formed by taking the tensor product of tensors. -/
|
||||
def tensoratorEquiv (c : X → 𝓣.Color) (d : Y → 𝓣.Color) :
|
||||
𝓣.Tensor c ⊗[R] 𝓣.Tensor d ≃ₗ[R] 𝓣.Tensor (Sum.elim c d) :=
|
||||
LinearEquiv.ofLinear (𝓣.tensoratorSymm) (𝓣.tensorator)
|
||||
(by
|
||||
apply PiTensorProduct.ext
|
||||
apply MultilinearMap.ext
|
||||
intro p
|
||||
simp [tensorator, tensoratorSymm, domCoprod]
|
||||
change (PiTensorProduct.lift _) ((PiTensorProduct.tprod R) _) =
|
||||
LinearMap.id ((PiTensorProduct.tprod R) p)
|
||||
rw [PiTensorProduct.lift.tprod]
|
||||
simp [elimPureTensorMulLin, elimPureTensor]
|
||||
change (PiTensorProduct.tprod R) _ = _
|
||||
apply congrArg
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl)
|
||||
(by
|
||||
apply tensorProd_piTensorProd_ext
|
||||
intro p q
|
||||
simp [tensorator, tensoratorSymm]
|
||||
change (PiTensorProduct.lift 𝓣.domCoprod)
|
||||
((PiTensorProduct.lift (𝓣.elimPureTensorMulLin p)) ((PiTensorProduct.tprod R) q)) =_
|
||||
rw [PiTensorProduct.lift.tprod]
|
||||
simp [elimPureTensorMulLin]
|
||||
rfl)
|
||||
|
||||
@[simp]
|
||||
lemma tensoratorEquiv_tmul_tprod (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY) :
|
||||
(𝓣.tensoratorEquiv cX cY) ((PiTensorProduct.tprod R) p ⊗ₜ[R] (PiTensorProduct.tprod R) q) =
|
||||
(PiTensorProduct.tprod R) (𝓣.elimPureTensor p q) := by
|
||||
simp only [tensoratorEquiv, tensoratorSymm, tensorator, domCoprod, LinearEquiv.ofLinear_apply,
|
||||
lift.tmul, LinearMap.coe_mk, AddHom.coe_mk, PiTensorProduct.lift.tprod]
|
||||
exact PiTensorProduct.lift.tprod q
|
||||
|
||||
lemma tensoratorEquiv_mapIso_cond {e : X ≃ Y} {e' : Z ≃ Y} {e'' : W ≃ X}
|
||||
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : bW = cX ∘ e'') :
|
||||
Sum.elim bW cZ = Sum.elim cX cY ∘ ⇑(e''.sumCongr e') := by
|
||||
subst h h' h''
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
@[simp]
|
||||
lemma tensoratorEquiv_mapIso (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
|
||||
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : bW = cX ∘ e'') :
|
||||
(TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) ≪≫ₗ (𝓣.tensoratorEquiv cX cY)
|
||||
= (𝓣.tensoratorEquiv bW cZ)
|
||||
≪≫ₗ (𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h'')) := by
|
||||
apply LinearEquiv.toLinearMap_inj.mp
|
||||
apply tensorProd_piTensorProd_ext
|
||||
intro p q
|
||||
simp only [LinearEquiv.coe_coe, LinearEquiv.trans_apply, congr_tmul, mapIso_tprod,
|
||||
tensoratorEquiv_tmul_tprod, Equiv.sumCongr_symm, Equiv.sumCongr_apply]
|
||||
apply congrArg
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
@[simp]
|
||||
lemma tensoratorEquiv_mapIso_apply (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
|
||||
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : cW = cX ∘ e'')
|
||||
(x : 𝓣.Tensor cW ⊗[R] 𝓣.Tensor cZ) :
|
||||
(𝓣.tensoratorEquiv cX cY) ((TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) x) =
|
||||
(𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h''))
|
||||
((𝓣.tensoratorEquiv cW cZ) x) := by
|
||||
trans ((TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) ≪≫ₗ
|
||||
(𝓣.tensoratorEquiv cX cY)) x
|
||||
rfl
|
||||
rw [tensoratorEquiv_mapIso]
|
||||
rfl
|
||||
exact e
|
||||
exact h
|
||||
|
||||
lemma tensoratorEquiv_mapIso_tmul (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X)
|
||||
(h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : cW = cX ∘ e'')
|
||||
(x : 𝓣.Tensor cW) (y : 𝓣.Tensor cZ) :
|
||||
(𝓣.tensoratorEquiv cX cY) ((𝓣.mapIso e'' h'' x) ⊗ₜ[R] (𝓣.mapIso e' h' y)) =
|
||||
(𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h''))
|
||||
((𝓣.tensoratorEquiv cW cZ) (x ⊗ₜ y)) := by
|
||||
rw [← tensoratorEquiv_mapIso_apply]
|
||||
rfl
|
||||
exact e
|
||||
exact h
|
||||
|
||||
/-!
|
||||
|
||||
## Splitting tensors into tensor products
|
||||
|
||||
-/
|
||||
|
||||
/-- The decomposition of a set into a direct sum based on the image of an injection. -/
|
||||
def decompEmbedSet (f : Y ↪ X) :
|
||||
X ≃ {x // x ∈ (Finset.image f Finset.univ)ᶜ} ⊕ Y :=
|
||||
(Equiv.Set.sumCompl (Set.range ⇑f)).symm.trans <|
|
||||
(Equiv.sumComm _ _).trans <|
|
||||
Equiv.sumCongr ((Equiv.subtypeEquivRight (by simp))) <|
|
||||
(Function.Embedding.toEquivRange f).symm
|
||||
|
||||
/-- The restriction of a map from an indexing set to the space to the complement of the image
|
||||
of an embedding. -/
|
||||
def decompEmbedColorLeft (c : X → 𝓣.Color) (f : Y ↪ X) :
|
||||
{x // x ∈ (Finset.image f Finset.univ)ᶜ} → 𝓣.Color :=
|
||||
(c ∘ (decompEmbedSet f).symm) ∘ Sum.inl
|
||||
|
||||
/-- The restriction of a map from an indexing set to the space to the image
|
||||
of an embedding. -/
|
||||
def decompEmbedColorRight (c : X → 𝓣.Color) (f : Y ↪ X) : Y → 𝓣.Color :=
|
||||
(c ∘ (decompEmbedSet f).symm) ∘ Sum.inr
|
||||
|
||||
lemma decompEmbed_cond (c : X → 𝓣.Color) (f : Y ↪ X) : c =
|
||||
(Sum.elim (𝓣.decompEmbedColorLeft c f) (𝓣.decompEmbedColorRight c f)) ∘ decompEmbedSet f := by
|
||||
simpa [decompEmbedColorLeft, decompEmbedColorRight] using (Equiv.comp_symm_eq _ _ _).mp rfl
|
||||
|
||||
/-- Decomposes a tensor into a tensor product of two tensors
|
||||
one which has indices in the image of the given embedding, and the other has indices in
|
||||
the complement of that image. -/
|
||||
def decompEmbed (f : Y ↪ X) :
|
||||
𝓣.Tensor cX ≃ₗ[R] 𝓣.Tensor (𝓣.decompEmbedColorLeft cX f) ⊗[R] 𝓣.Tensor (cX ∘ f) :=
|
||||
(𝓣.mapIso (decompEmbedSet f) (𝓣.decompEmbed_cond cX f)) ≪≫ₗ
|
||||
(𝓣.tensoratorEquiv (𝓣.decompEmbedColorLeft cX f) (𝓣.decompEmbedColorRight cX f)).symm
|
||||
|
||||
/-!
|
||||
|
||||
## Contraction
|
||||
|
||||
-/
|
||||
|
||||
/-- A linear map taking tensors mapped with the same index set to the product of paired tensors. -/
|
||||
def pairProd : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cX2 →ₗ[R]
|
||||
⨂[R] x, 𝓣.ColorModule (cX x) ⊗[R] 𝓣.ColorModule (cX2 x) :=
|
||||
TensorProduct.lift (
|
||||
PiTensorProduct.map₂ (fun x =>
|
||||
TensorProduct.mk R (𝓣.ColorModule (cX x)) (𝓣.ColorModule (cX2 x))))
|
||||
|
||||
lemma mkPiAlgebra_equiv (e : X ≃ Y) :
|
||||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) =
|
||||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R Y R)) ∘ₗ
|
||||
(PiTensorProduct.reindex R _ e).toLinearMap := by
|
||||
apply PiTensorProduct.ext
|
||||
apply MultilinearMap.ext
|
||||
intro x
|
||||
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.lift.tprod,
|
||||
MultilinearMap.mkPiAlgebra_apply, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
|
||||
PiTensorProduct.reindex_tprod, Equiv.prod_comp]
|
||||
|
||||
/-- Given a tensor in `𝓣.Tensor cX` and a tensor in `𝓣.Tensor (𝓣.τ ∘ cX)`, the element of
|
||||
`R` formed by contracting all of their indices. -/
|
||||
def contrAll' : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor (𝓣.τ ∘ cX) →ₗ[R] R :=
|
||||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) ∘ₗ
|
||||
(PiTensorProduct.map (fun x => 𝓣.contrDual (cX x))) ∘ₗ
|
||||
(𝓣.pairProd)
|
||||
|
||||
lemma contrAll'_mapIso_cond {e : X ≃ Y} (h : cX = cY ∘ e) :
|
||||
𝓣.τ ∘ cY = (𝓣.τ ∘ cX) ∘ ⇑e.symm := by
|
||||
subst h
|
||||
exact (Equiv.eq_comp_symm e (𝓣.τ ∘ cY) (𝓣.τ ∘ cY ∘ ⇑e)).mpr rfl
|
||||
|
||||
@[simp]
|
||||
lemma contrAll'_mapIso (e : X ≃ Y) (h : c = cY ∘ e) :
|
||||
𝓣.contrAll' ∘ₗ
|
||||
(TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap =
|
||||
𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl R _)
|
||||
(𝓣.mapIso e.symm (𝓣.contrAll'_mapIso_cond h))).toLinearMap := by
|
||||
apply TensorProduct.ext'
|
||||
refine fun x ↦
|
||||
PiTensorProduct.induction_on' x ?_ (by
|
||||
intro a b hx hy y
|
||||
simp [map_add, add_tmul, hx, hy])
|
||||
intro rx fx
|
||||
refine fun y ↦
|
||||
PiTensorProduct.induction_on' y ?_ (by
|
||||
intro a b hx hy
|
||||
simp at hx hy
|
||||
simp [map_add, tmul_add, hx, hy])
|
||||
intro ry fy
|
||||
simp [contrAll']
|
||||
rw [mkPiAlgebra_equiv e]
|
||||
apply congrArg
|
||||
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply]
|
||||
apply congrArg
|
||||
rw [← LinearEquiv.symm_apply_eq]
|
||||
rw [PiTensorProduct.reindex_symm]
|
||||
rw [← PiTensorProduct.map_reindex]
|
||||
subst h
|
||||
simp only [Equiv.symm_symm_apply, Function.comp_apply]
|
||||
apply congrArg
|
||||
rw [pairProd, pairProd]
|
||||
simp only [Function.comp_apply, lift.tmul, LinearMapClass.map_smul, LinearMap.smul_apply]
|
||||
apply congrArg
|
||||
change _ = ((PiTensorProduct.map₂ fun x => TensorProduct.mk R (𝓣.ColorModule (cY (e x)))
|
||||
(𝓣.ColorModule (𝓣.τ (cY (e x)))))
|
||||
((PiTensorProduct.tprod R) fx))
|
||||
((𝓣.mapIso e.symm _) ((PiTensorProduct.tprod R) fy))
|
||||
rw [mapIso_tprod]
|
||||
simp only [Equiv.symm_symm_apply, Function.comp_apply]
|
||||
rw [PiTensorProduct.map₂_tprod_tprod]
|
||||
change PiTensorProduct.reindex R _ e.symm
|
||||
((PiTensorProduct.map₂ _
|
||||
((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (fx (e.symm i))))
|
||||
((PiTensorProduct.tprod R) fy)) = _
|
||||
rw [PiTensorProduct.map₂_tprod_tprod]
|
||||
simp only [Equiv.symm_symm_apply, Function.comp_apply, mk_apply]
|
||||
erw [PiTensorProduct.reindex_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
simp only [Equiv.symm_symm_apply]
|
||||
congr
|
||||
simp [colorModuleCast]
|
||||
apply cast_eq_iff_heq.mpr
|
||||
rw [Equiv.symm_apply_apply]
|
||||
|
||||
@[simp]
|
||||
lemma contrAll'_mapIso_tmul (e : X ≃ Y) (h : c = cY ∘ e) (x : 𝓣.Tensor c)
|
||||
(y : 𝓣.Tensor (𝓣.τ ∘ cY)) : 𝓣.contrAll' ((𝓣.mapIso e h) x ⊗ₜ[R] y) =
|
||||
𝓣.contrAll' (x ⊗ₜ[R] (𝓣.mapIso e.symm (𝓣.contrAll'_mapIso_cond h) y)) := by
|
||||
change (𝓣.contrAll' ∘ₗ
|
||||
(TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap) (x ⊗ₜ[R] y) = _
|
||||
rw [contrAll'_mapIso]
|
||||
rfl
|
||||
|
||||
/-- The contraction of all the indices of two tensors with dual colors. -/
|
||||
def contrAll {c : X → 𝓣.Color} {d : Y → 𝓣.Color}
|
||||
(e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) : 𝓣.Tensor c ⊗[R] 𝓣.Tensor d →ₗ[R] R :=
|
||||
𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl _ _)
|
||||
(𝓣.mapIso e.symm (by subst h; funext a; simp; rw [𝓣.τ_involutive]))).toLinearMap
|
||||
|
||||
lemma contrAll_symm_cond {e : X ≃ Y} (h : c = 𝓣.τ ∘ cY ∘ e) :
|
||||
cY = 𝓣.τ ∘ c ∘ ⇑e.symm := by
|
||||
subst h
|
||||
ext1 x
|
||||
simp only [Function.comp_apply, Equiv.apply_symm_apply]
|
||||
rw [𝓣.τ_involutive]
|
||||
|
||||
lemma contrAll_mapIso_right_cond {e : X ≃ Y} {e' : Z ≃ Y}
|
||||
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') : c = 𝓣.τ ∘ cZ ∘ ⇑(e.trans e'.symm) := by
|
||||
subst h h'
|
||||
ext1 x
|
||||
simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply]
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_mapIso_right_tmul (e : X ≃ Y) (e' : Z ≃ Y)
|
||||
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (x : 𝓣.Tensor c) (z : 𝓣.Tensor cZ) :
|
||||
𝓣.contrAll e h (x ⊗ₜ[R] 𝓣.mapIso e' h' z) =
|
||||
𝓣.contrAll (e.trans e'.symm) (𝓣.contrAll_mapIso_right_cond h h') (x ⊗ₜ[R] z) := by
|
||||
rw [contrAll, contrAll]
|
||||
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, congr_tmul,
|
||||
LinearEquiv.refl_apply, mapIso_mapIso]
|
||||
congr
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_comp_mapIso_right (e : X ≃ Y) (e' : Z ≃ Y)
|
||||
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') : 𝓣.contrAll e h ∘ₗ
|
||||
(TensorProduct.congr (LinearEquiv.refl R (𝓣.Tensor c)) (𝓣.mapIso e' h')).toLinearMap
|
||||
= 𝓣.contrAll (e.trans e'.symm) (𝓣.contrAll_mapIso_right_cond h h') := by
|
||||
apply TensorProduct.ext'
|
||||
intro x y
|
||||
exact 𝓣.contrAll_mapIso_right_tmul e e' h h' x y
|
||||
|
||||
lemma contrAll_mapIso_left_cond {e : X ≃ Y} {e' : Z ≃ X}
|
||||
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = c ∘ e') : cZ = 𝓣.τ ∘ cY ∘ ⇑(e'.trans e) := by
|
||||
subst h h'
|
||||
ext1 x
|
||||
simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply]
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_mapIso_left_tmul {e : X ≃ Y} {e' : Z ≃ X}
|
||||
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = c ∘ e') (x : 𝓣.Tensor cZ) (y : 𝓣.Tensor cY) :
|
||||
𝓣.contrAll e h (𝓣.mapIso e' h' x ⊗ₜ[R] y) =
|
||||
𝓣.contrAll (e'.trans e) (𝓣.contrAll_mapIso_left_cond h h') (x ⊗ₜ[R] y) := by
|
||||
rw [contrAll, contrAll]
|
||||
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, congr_tmul,
|
||||
LinearEquiv.refl_apply, contrAll'_mapIso_tmul, mapIso_mapIso]
|
||||
congr
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_mapIso_left {e : X ≃ Y} {e' : Z ≃ X}
|
||||
(h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = c ∘ e') :
|
||||
𝓣.contrAll e h ∘ₗ
|
||||
(TensorProduct.congr (𝓣.mapIso e' h') (LinearEquiv.refl R (𝓣.Tensor cY))).toLinearMap
|
||||
= 𝓣.contrAll (e'.trans e) (𝓣.contrAll_mapIso_left_cond h h') := by
|
||||
apply TensorProduct.ext'
|
||||
intro x y
|
||||
exact 𝓣.contrAll_mapIso_left_tmul h h' x y
|
||||
|
||||
end PreTensorStructure
|
||||
|
||||
/-! TODO: Add unit here. -/
|
||||
/-- A `PreTensorStructure` with the additional constraint that `contrDua` is symmetric. -/
|
||||
structure TensorStructure (R : Type) [CommSemiring R] extends PreTensorStructure R where
|
||||
/-- The symmetry condition on `contrDua`. -/
|
||||
contrDual_symm : ∀ μ,
|
||||
(contrDual μ) ∘ₗ (TensorProduct.comm R (ColorModule (τ μ)) (ColorModule μ)).toLinearMap =
|
||||
(contrDual (τ μ)) ∘ₗ (TensorProduct.congr (LinearEquiv.refl _ _)
|
||||
(toPreTensorStructure.colorModuleCast (by rw[toPreTensorStructure.τ_involutive]))).toLinearMap
|
||||
|
||||
namespace TensorStructure
|
||||
|
||||
open PreTensorStructure
|
||||
|
||||
variable (𝓣 : TensorStructure R)
|
||||
|
||||
variable {d : ℕ} {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
|
||||
{c c₂ : X → 𝓣.Color} {d : Y → 𝓣.Color} {b : Z → 𝓣.Color} {d' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||||
|
||||
end TensorStructure
|
||||
|
||||
/-- A `TensorStructure` with a group action. -/
|
||||
structure GroupTensorStructure (R : Type) [CommSemiring R]
|
||||
(G : Type) [Group G] extends TensorStructure R where
|
||||
/-- For each color `μ` a representation of `G` on `ColorModule μ`. -/
|
||||
repColorModule : (μ : Color) → Representation R G (ColorModule μ)
|
||||
/-- The contraction of a vector with its dual is invariant under the group action. -/
|
||||
contrDual_inv : ∀ μ g, contrDual μ ∘ₗ
|
||||
TensorProduct.map (repColorModule μ g) (repColorModule (τ μ) g) = contrDual μ
|
||||
|
||||
namespace GroupTensorStructure
|
||||
open TensorStructure
|
||||
open PreTensorStructure
|
||||
|
||||
variable {G : Type} [Group G]
|
||||
|
||||
variable (𝓣 : GroupTensorStructure R G)
|
||||
|
||||
variable {d : ℕ} {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
|
||||
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||||
|
||||
/-- The representation of the group `G` on the vector space of tensors. -/
|
||||
def rep : Representation R G (𝓣.Tensor cX) where
|
||||
toFun g := PiTensorProduct.map (fun x => 𝓣.repColorModule (cX x) g)
|
||||
map_one' := by
|
||||
simp_all only [_root_.map_one, PiTensorProduct.map_one]
|
||||
map_mul' g g' := by
|
||||
simp_all only [_root_.map_mul]
|
||||
exact PiTensorProduct.map_mul _ _
|
||||
|
||||
local infixl:78 " • " => 𝓣.rep
|
||||
|
||||
lemma repColorModule_colorModuleCast_apply (h : μ = ν) (g : G) (x : 𝓣.ColorModule μ) :
|
||||
(𝓣.repColorModule ν g) (𝓣.colorModuleCast h x) =
|
||||
(𝓣.colorModuleCast h) (𝓣.repColorModule μ g x) := by
|
||||
subst h
|
||||
simp [colorModuleCast]
|
||||
|
||||
@[simp]
|
||||
lemma repColorModule_colorModuleCast (h : μ = ν) (g : G) :
|
||||
(𝓣.repColorModule ν g) ∘ₗ (𝓣.colorModuleCast h).toLinearMap =
|
||||
(𝓣.colorModuleCast h).toLinearMap ∘ₗ (𝓣.repColorModule μ g) := by
|
||||
apply LinearMap.ext
|
||||
intro x
|
||||
simp [repColorModule_colorModuleCast_apply]
|
||||
|
||||
@[simp]
|
||||
lemma rep_mapIso (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) :
|
||||
(𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap = (𝓣.mapIso e h).toLinearMap ∘ₗ 𝓣.rep g := by
|
||||
apply PiTensorProduct.ext
|
||||
apply MultilinearMap.ext
|
||||
intro x
|
||||
simp only [LinearMap.compMultilinearMap_apply, LinearMap.coe_comp, LinearEquiv.coe_coe,
|
||||
Function.comp_apply]
|
||||
erw [mapIso_tprod]
|
||||
simp [rep, repColorModule_colorModuleCast_apply]
|
||||
change (PiTensorProduct.map fun x => (𝓣.repColorModule (cY x)) g)
|
||||
((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (x (e.symm i))) =
|
||||
(𝓣.mapIso e h) ((PiTensorProduct.map _) ((PiTensorProduct.tprod R) x))
|
||||
rw [PiTensorProduct.map_tprod, PiTensorProduct.map_tprod]
|
||||
rw [mapIso_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
subst h
|
||||
simp [repColorModule_colorModuleCast_apply]
|
||||
|
||||
@[simp]
|
||||
lemma rep_mapIso_apply (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) (x : 𝓣.Tensor cX) :
|
||||
g • (𝓣.mapIso e h x) = (𝓣.mapIso e h) (g • x) := by
|
||||
trans ((𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap) x
|
||||
rfl
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma rep_tprod (g : G) (f : (i : X) → 𝓣.ColorModule (cX i)) :
|
||||
g • (PiTensorProduct.tprod R f) = PiTensorProduct.tprod R (fun x =>
|
||||
𝓣.repColorModule (cX x) g (f x)) := by
|
||||
simp [rep]
|
||||
change (PiTensorProduct.map _) ((PiTensorProduct.tprod R) f) = _
|
||||
rw [PiTensorProduct.map_tprod]
|
||||
|
||||
/-!
|
||||
|
||||
## Group acting on tensor products
|
||||
|
||||
-/
|
||||
|
||||
lemma rep_tensoratorEquiv (g : G) :
|
||||
(𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.rep g ∘ₗ
|
||||
(𝓣.tensoratorEquiv cX cY).toLinearMap := by
|
||||
apply tensorProd_piTensorProd_ext
|
||||
intro p q
|
||||
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, map_tmul, rep_tprod,
|
||||
tensoratorEquiv_tmul_tprod]
|
||||
apply congrArg
|
||||
funext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
lemma rep_tensoratorEquiv_apply (g : G) (x : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY) :
|
||||
(𝓣.tensoratorEquiv cX cY) ((TensorProduct.map (𝓣.rep g) (𝓣.rep g)) x)
|
||||
= (𝓣.rep g) ((𝓣.tensoratorEquiv cX cY) x) := by
|
||||
trans ((𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x
|
||||
rfl
|
||||
rw [rep_tensoratorEquiv]
|
||||
rfl
|
||||
|
||||
lemma rep_tensoratorEquiv_tmul (g : G) (x : 𝓣.Tensor cX) (y : 𝓣.Tensor cY) :
|
||||
(𝓣.tensoratorEquiv cX cY) ((g • x) ⊗ₜ[R] (g • y)) =
|
||||
g • ((𝓣.tensoratorEquiv cX cY) (x ⊗ₜ[R] y)) := by
|
||||
nth_rewrite 1 [← rep_tensoratorEquiv_apply]
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Group acting on contraction
|
||||
|
||||
-/
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_rep {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) (g : G) :
|
||||
𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.contrAll e h := by
|
||||
apply TensorProduct.ext'
|
||||
refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by
|
||||
intro a b hx hy y
|
||||
simp [map_add, add_tmul, hx, hy])
|
||||
intro rx fx
|
||||
refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by
|
||||
intro a b hx hy
|
||||
simp at hx hy
|
||||
simp [map_add, tmul_add, hx, hy])
|
||||
intro ry fy
|
||||
simp [contrAll, TensorProduct.smul_tmul]
|
||||
apply congrArg
|
||||
apply congrArg
|
||||
simp [contrAll']
|
||||
apply congrArg
|
||||
simp [pairProd]
|
||||
change (PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _) =
|
||||
(PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _)
|
||||
rw [PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map_tprod,
|
||||
PiTensorProduct.map_tprod]
|
||||
simp only [mk_apply]
|
||||
apply congrArg
|
||||
funext x
|
||||
rw [← repColorModule_colorModuleCast_apply]
|
||||
nth_rewrite 2 [← 𝓣.contrDual_inv (c x) g]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_rep_apply {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
|
||||
(g : G) (x : 𝓣.Tensor c ⊗ 𝓣.Tensor d) :
|
||||
𝓣.contrAll e h (TensorProduct.map (𝓣.rep g) (𝓣.rep g) x) = 𝓣.contrAll e h x := by
|
||||
change (𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x = _
|
||||
rw [contrAll_rep]
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_rep_tmul {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
|
||||
(g : G) (x : 𝓣.Tensor c) (y : 𝓣.Tensor d) :
|
||||
𝓣.contrAll e h ((g • x) ⊗ₜ[R] (g • y)) = 𝓣.contrAll e h (x ⊗ₜ[R] y) := by
|
||||
nth_rewrite 2 [← contrAll_rep_apply]
|
||||
rfl
|
||||
|
||||
end GroupTensorStructure
|
||||
|
||||
end
|
|
@ -1,661 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Logic.Function.CompTypeclasses
|
||||
import Mathlib.Data.Real.Basic
|
||||
import Mathlib.Data.Fintype.BigOperators
|
||||
import Mathlib.Logic.Equiv.Fin
|
||||
import Mathlib.Tactic.FinCases
|
||||
import Mathlib.Logic.Equiv.Fintype
|
||||
/-!
|
||||
|
||||
# Real Lorentz Tensors
|
||||
|
||||
In this file we define real Lorentz tensors.
|
||||
|
||||
We implicitly follow the definition of a modular operad.
|
||||
This will relation should be made explicit in the future.
|
||||
|
||||
## References
|
||||
|
||||
-- For modular operads see: [Raynor][raynor2021graphical]
|
||||
|
||||
-/
|
||||
/-! TODO: Do complex tensors, with Van der Waerden notation for fermions. -/
|
||||
/-! TODO: Generalize to maps into Lorentz tensors. -/
|
||||
|
||||
/-- The possible `colors` of an index for a RealLorentzTensor.
|
||||
There are two possiblities, `up` and `down`. -/
|
||||
inductive RealLorentzTensor.Colors where
|
||||
| up : RealLorentzTensor.Colors
|
||||
| down : RealLorentzTensor.Colors
|
||||
|
||||
/-- The association of colors with indices. For up and down this is `Fin 1 ⊕ Fin d`. -/
|
||||
def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Type :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d
|
||||
| RealLorentzTensor.Colors.down => Fin 1 ⊕ Fin d
|
||||
|
||||
instance (d : ℕ) (μ : RealLorentzTensor.Colors) : Fintype (RealLorentzTensor.ColorsIndex d μ) :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => instFintypeSum (Fin 1) (Fin d)
|
||||
| RealLorentzTensor.Colors.down => instFintypeSum (Fin 1) (Fin d)
|
||||
|
||||
instance (d : ℕ) (μ : RealLorentzTensor.Colors) : DecidableEq (RealLorentzTensor.ColorsIndex d μ) :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => instDecidableEqSum
|
||||
| RealLorentzTensor.Colors.down => instDecidableEqSum
|
||||
|
||||
/-- An `IndexValue` is a set of actual values an index can take. e.g. for a
|
||||
3-tensor (0, 1, 2). -/
|
||||
def RealLorentzTensor.IndexValue {X : Type} (d : ℕ) (c : X → RealLorentzTensor.Colors) :
|
||||
Type 0 := (x : X) → RealLorentzTensor.ColorsIndex d (c x)
|
||||
|
||||
/-- A Lorentz Tensor defined by its coordinate map. -/
|
||||
structure RealLorentzTensor (d : ℕ) (X : Type) where
|
||||
/-- The color associated to each index of the tensor. -/
|
||||
color : X → RealLorentzTensor.Colors
|
||||
/-- The coordinate map for the tensor. -/
|
||||
coord : RealLorentzTensor.IndexValue d color → ℝ
|
||||
|
||||
namespace RealLorentzTensor
|
||||
open Matrix
|
||||
universe u1
|
||||
variable {d : ℕ} {X Y Z : Type} (c : X → Colors)
|
||||
|
||||
/-!
|
||||
|
||||
## Colors
|
||||
|
||||
-/
|
||||
|
||||
/-- The involution acting on colors. -/
|
||||
def τ : Colors → Colors
|
||||
| Colors.up => Colors.down
|
||||
| Colors.down => Colors.up
|
||||
|
||||
/-- The map τ is an involution. -/
|
||||
@[simp]
|
||||
lemma τ_involutive : Function.Involutive τ := by
|
||||
intro x
|
||||
cases x <;> rfl
|
||||
|
||||
lemma color_eq_dual_symm {μ ν : Colors} (h : μ = τ ν) : ν = τ μ :=
|
||||
(Function.Involutive.eq_iff τ_involutive).mp h.symm
|
||||
|
||||
/-- The color associated with an element of `x ∈ X` for a tensor `T`. -/
|
||||
def ch {X : Type} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x
|
||||
|
||||
/-- An equivalence of `ColorsIndex` types given an equality of colors. -/
|
||||
def colorsIndexCast {d : ℕ} {μ₁ μ₂ : RealLorentzTensor.Colors} (h : μ₁ = μ₂) :
|
||||
ColorsIndex d μ₁ ≃ ColorsIndex d μ₂ :=
|
||||
Equiv.cast (congrArg (ColorsIndex d) h)
|
||||
|
||||
/-- An equivalence of `ColorsIndex` between that of a color and that of its dual. -/
|
||||
def colorsIndexDualCastSelf {d : ℕ} {μ : RealLorentzTensor.Colors}:
|
||||
ColorsIndex d μ ≃ ColorsIndex d (τ μ) where
|
||||
toFun x :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => x
|
||||
| RealLorentzTensor.Colors.down => x
|
||||
invFun x :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => x
|
||||
| RealLorentzTensor.Colors.down => x
|
||||
left_inv x := by cases μ <;> rfl
|
||||
right_inv x := by cases μ <;> rfl
|
||||
|
||||
/-- An equivalence of `ColorsIndex` types given an equality of a color and the dual of a color. -/
|
||||
def colorsIndexDualCast {μ ν : Colors} (h : μ = τ ν) :
|
||||
ColorsIndex d μ ≃ ColorsIndex d ν :=
|
||||
(colorsIndexCast h).trans colorsIndexDualCastSelf.symm
|
||||
|
||||
lemma colorsIndexDualCast_symm {μ ν : Colors} (h : μ = τ ν) :
|
||||
(colorsIndexDualCast h).symm =
|
||||
@colorsIndexDualCast d _ _ ((Function.Involutive.eq_iff τ_involutive).mp h.symm) := by
|
||||
match μ, ν with
|
||||
| Colors.up, Colors.down => rfl
|
||||
| Colors.down, Colors.up => rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Index values
|
||||
|
||||
-/
|
||||
|
||||
instance [Fintype X] [DecidableEq X] : Fintype (IndexValue d c) := Pi.fintype
|
||||
|
||||
instance [Fintype X] : DecidableEq (IndexValue d c) :=
|
||||
Fintype.decidablePiFintype
|
||||
|
||||
/-!
|
||||
|
||||
## Induced isomorphisms between IndexValue sets
|
||||
|
||||
-/
|
||||
|
||||
/-- An isomorphism of the type of index values given an isomorphism of sets. -/
|
||||
@[simps!]
|
||||
def indexValueIso (d : ℕ) (f : X ≃ Y) {i : X → Colors} {j : Y → Colors} (h : i = j ∘ f) :
|
||||
IndexValue d i ≃ IndexValue d j :=
|
||||
(Equiv.piCongrRight (fun μ => colorsIndexCast (congrFun h μ))).trans $
|
||||
Equiv.piCongrLeft (fun y => RealLorentzTensor.ColorsIndex d (j y)) f
|
||||
|
||||
lemma indexValueIso_symm_apply' (d : ℕ) (f : X ≃ Y) {i : X → Colors} {j : Y → Colors}
|
||||
(h : i = j ∘ f) (y : IndexValue d j) (x : X) :
|
||||
(indexValueIso d f h).symm y x = (colorsIndexCast (congrFun h x)).symm (y (f x)) := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma indexValueIso_trans (d : ℕ) (f : X ≃ Y) (g : Y ≃ Z) {i : X → Colors}
|
||||
{j : Y → Colors} {k : Z → Colors} (h : i = j ∘ f) (h' : j = k ∘ g) :
|
||||
(indexValueIso d f h).trans (indexValueIso d g h') =
|
||||
indexValueIso d (f.trans g) (by rw [h, h', Function.comp.assoc]; rfl) := by
|
||||
have h1 : ((indexValueIso d f h).trans (indexValueIso d g h')).symm =
|
||||
(indexValueIso d (f.trans g) (by rw [h, h', Function.comp.assoc]; rfl)).symm := by
|
||||
subst h' h
|
||||
exact Equiv.coe_inj.mp rfl
|
||||
simpa only [Equiv.symm_symm] using congrArg (fun e => e.symm) h1
|
||||
|
||||
lemma indexValueIso_symm (d : ℕ) (f : X ≃ Y) (h : i = j ∘ f) :
|
||||
(indexValueIso d f h).symm =
|
||||
indexValueIso d f.symm ((Equiv.eq_comp_symm f j i).mpr (id (Eq.symm h))) := by
|
||||
ext i : 1
|
||||
rw [← Equiv.symm_apply_eq]
|
||||
funext y
|
||||
rw [indexValueIso_symm_apply', indexValueIso_symm_apply']
|
||||
simp only [Function.comp_apply, colorsIndexCast, Equiv.cast_symm, Equiv.cast_apply, cast_cast]
|
||||
apply cast_eq_iff_heq.mpr
|
||||
rw [Equiv.apply_symm_apply]
|
||||
|
||||
lemma indexValueIso_eq_symm (d : ℕ) (f : X ≃ Y) (h : i = j ∘ f) :
|
||||
indexValueIso d f h =
|
||||
(indexValueIso d f.symm ((Equiv.eq_comp_symm f j i).mpr (id (Eq.symm h)))).symm := by
|
||||
rw [indexValueIso_symm]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma indexValueIso_refl (d : ℕ) (i : X → Colors) :
|
||||
indexValueIso d (Equiv.refl X) (rfl : i = i) = Equiv.refl _ := by
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Dual isomorphism for index values
|
||||
|
||||
-/
|
||||
|
||||
/-- The isomorphism between the index values of a color map and its dual. -/
|
||||
@[simps!]
|
||||
def indexValueDualIso (d : ℕ) {i j : X → Colors} (h : i = τ ∘ j) :
|
||||
IndexValue d i ≃ IndexValue d j :=
|
||||
(Equiv.piCongrRight (fun μ => colorsIndexDualCast (congrFun h μ)))
|
||||
|
||||
/-!
|
||||
|
||||
## Extensionality
|
||||
|
||||
-/
|
||||
|
||||
lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color)
|
||||
(h' : T₁.coord = fun i => T₂.coord (indexValueIso d (Equiv.refl X) h i)) :
|
||||
T₁ = T₂ := by
|
||||
cases T₁
|
||||
cases T₂
|
||||
simp_all only [IndexValue, mk.injEq]
|
||||
apply And.intro h
|
||||
simp only at h
|
||||
subst h
|
||||
simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h'
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Mapping isomorphisms.
|
||||
|
||||
-/
|
||||
|
||||
/-- An equivalence of Tensors given an equivalence of underlying sets. -/
|
||||
@[simps!]
|
||||
def mapIso (d : ℕ) (f : X ≃ Y) : RealLorentzTensor d X ≃ RealLorentzTensor d Y where
|
||||
toFun T := {
|
||||
color := T.color ∘ f.symm,
|
||||
coord := T.coord ∘ (indexValueIso d f (by simp : T.color = T.color ∘ f.symm ∘ f)).symm}
|
||||
invFun T := {
|
||||
color := T.color ∘ f,
|
||||
coord := T.coord ∘ (indexValueIso d f.symm (by simp : T.color = T.color ∘ f ∘ f.symm)).symm}
|
||||
left_inv T := by
|
||||
refine ext ?_ ?_
|
||||
· simp [Function.comp.assoc]
|
||||
· funext i
|
||||
simp only [IndexValue, Function.comp_apply, Function.comp_id]
|
||||
apply congrArg
|
||||
funext x
|
||||
erw [indexValueIso_symm_apply', indexValueIso_symm_apply', indexValueIso_eq_symm,
|
||||
indexValueIso_symm_apply']
|
||||
rw [← Equiv.apply_eq_iff_eq_symm_apply]
|
||||
simp only [Equiv.refl_symm, Equiv.coe_refl, Function.comp_apply, id_eq, colorsIndexCast,
|
||||
Equiv.cast_symm, Equiv.cast_apply, cast_cast, Equiv.refl_apply]
|
||||
apply cast_eq_iff_heq.mpr
|
||||
congr
|
||||
exact Equiv.symm_apply_apply f x
|
||||
right_inv T := by
|
||||
refine ext ?_ ?_
|
||||
· simp [Function.comp.assoc]
|
||||
· funext i
|
||||
simp only [IndexValue, Function.comp_apply, Function.comp_id]
|
||||
apply congrArg
|
||||
funext x
|
||||
erw [indexValueIso_symm_apply', indexValueIso_symm_apply', indexValueIso_eq_symm,
|
||||
indexValueIso_symm_apply']
|
||||
rw [← Equiv.apply_eq_iff_eq_symm_apply]
|
||||
simp only [Equiv.refl_symm, Equiv.coe_refl, Function.comp_apply, id_eq, colorsIndexCast,
|
||||
Equiv.cast_symm, Equiv.cast_apply, cast_cast, Equiv.refl_apply]
|
||||
apply cast_eq_iff_heq.mpr
|
||||
congr
|
||||
exact Equiv.apply_symm_apply f x
|
||||
|
||||
@[simp]
|
||||
lemma mapIso_trans (f : X ≃ Y) (g : Y ≃ Z) :
|
||||
(mapIso d f).trans (mapIso d g) = mapIso d (f.trans g) := by
|
||||
refine Equiv.coe_inj.mp ?_
|
||||
funext T
|
||||
refine ext rfl ?_
|
||||
simp only [Equiv.trans_apply, IndexValue, mapIso_apply_color, Equiv.symm_trans_apply,
|
||||
indexValueIso_refl, Equiv.refl_apply, mapIso_apply_coord]
|
||||
funext i
|
||||
rw [mapIso_apply_coord, mapIso_apply_coord]
|
||||
apply congrArg
|
||||
rw [← indexValueIso_trans]
|
||||
rfl
|
||||
exact (Equiv.comp_symm_eq f (T.color ∘ ⇑f.symm) T.color).mp rfl
|
||||
|
||||
lemma mapIso_symm (f : X ≃ Y) : (mapIso d f).symm = mapIso d f.symm := rfl
|
||||
|
||||
lemma mapIso_refl : mapIso d (Equiv.refl X) = Equiv.refl _ := rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Sums
|
||||
|
||||
-/
|
||||
|
||||
/-- An equivalence that splits elements of `IndexValue d (Sum.elim TX TY)` into two components. -/
|
||||
def indexValueSumEquiv {X Y : Type} {TX : X → Colors} {TY : Y → Colors} :
|
||||
IndexValue d (Sum.elim TX TY) ≃ IndexValue d TX × IndexValue d TY where
|
||||
toFun i := (fun x => i (Sum.inl x), fun x => i (Sum.inr x))
|
||||
invFun p := fun c => match c with
|
||||
| Sum.inl x => (p.1 x)
|
||||
| Sum.inr x => (p.2 x)
|
||||
left_inv i := by
|
||||
simp only [IndexValue]
|
||||
ext1 x
|
||||
cases x with
|
||||
| inl val => rfl
|
||||
| inr val_1 => rfl
|
||||
right_inv p := rfl
|
||||
|
||||
/-- An equivalence between index values formed by commuting sums. -/
|
||||
def indexValueSumComm {X Y : Type} (Tc : X → Colors) (Sc : Y → Colors) :
|
||||
IndexValue d (Sum.elim Tc Sc) ≃ IndexValue d (Sum.elim Sc Tc) :=
|
||||
indexValueIso d (Equiv.sumComm X Y) (by aesop)
|
||||
|
||||
/-!
|
||||
|
||||
## Marked Lorentz tensors
|
||||
|
||||
To define contraction and multiplication of Lorentz tensors we need to mark indices.
|
||||
|
||||
-/
|
||||
|
||||
/-- A `RealLorentzTensor` with `n` marked indices. -/
|
||||
def Marked (d : ℕ) (X : Type) (n : ℕ) : Type :=
|
||||
RealLorentzTensor d (X ⊕ Fin n)
|
||||
|
||||
namespace Marked
|
||||
|
||||
variable {n m : ℕ}
|
||||
|
||||
/-- The marked point. -/
|
||||
def markedPoint (X : Type) (i : Fin n) : (X ⊕ Fin n) :=
|
||||
Sum.inr i
|
||||
|
||||
/-- The colors of unmarked indices. -/
|
||||
def unmarkedColor (T : Marked d X n) : X → Colors :=
|
||||
T.color ∘ Sum.inl
|
||||
|
||||
/-- The colors of marked indices. -/
|
||||
def markedColor (T : Marked d X n) : Fin n → Colors :=
|
||||
T.color ∘ Sum.inr
|
||||
|
||||
/-- The index values restricted to unmarked indices. -/
|
||||
def UnmarkedIndexValue (T : Marked d X n) : Type :=
|
||||
IndexValue d T.unmarkedColor
|
||||
|
||||
instance [Fintype X] [DecidableEq X] (T : Marked d X n) : Fintype T.UnmarkedIndexValue :=
|
||||
Pi.fintype
|
||||
|
||||
instance [Fintype X] (T : Marked d X n) : DecidableEq T.UnmarkedIndexValue :=
|
||||
Fintype.decidablePiFintype
|
||||
|
||||
/-- The index values restricted to marked indices. -/
|
||||
def MarkedIndexValue (T : Marked d X n) : Type :=
|
||||
IndexValue d T.markedColor
|
||||
|
||||
instance (T : Marked d X n) : Fintype T.MarkedIndexValue :=
|
||||
Pi.fintype
|
||||
|
||||
instance (T : Marked d X n) : DecidableEq T.MarkedIndexValue :=
|
||||
Fintype.decidablePiFintype
|
||||
|
||||
lemma color_eq_elim (T : Marked d X n) :
|
||||
T.color = Sum.elim T.unmarkedColor T.markedColor := by
|
||||
ext1 x
|
||||
cases' x <;> rfl
|
||||
|
||||
/-- An equivalence splitting elements of `IndexValue d T.color` into their two components. -/
|
||||
def splitIndexValue {T : Marked d X n} :
|
||||
IndexValue d T.color ≃ T.UnmarkedIndexValue × T.MarkedIndexValue :=
|
||||
(indexValueIso d (Equiv.refl _) T.color_eq_elim).trans
|
||||
indexValueSumEquiv
|
||||
|
||||
@[simp]
|
||||
lemma splitIndexValue_sum {T : Marked d X n} [Fintype X] [DecidableEq X]
|
||||
(P : T.UnmarkedIndexValue × T.MarkedIndexValue → ℝ) :
|
||||
∑ i, P (splitIndexValue i) = ∑ j, ∑ k, P (j, k) := by
|
||||
rw [Equiv.sum_comp splitIndexValue, Fintype.sum_prod_type]
|
||||
|
||||
/-- Construction of marked index values for the case of 1 marked index. -/
|
||||
def oneMarkedIndexValue {T : Marked d X 1} :
|
||||
ColorsIndex d (T.color (markedPoint X 0)) ≃ T.MarkedIndexValue where
|
||||
toFun x := fun i => match i with
|
||||
| 0 => x
|
||||
invFun i := i 0
|
||||
left_inv x := rfl
|
||||
right_inv i := by
|
||||
funext x
|
||||
fin_cases x
|
||||
rfl
|
||||
|
||||
/-- Construction of marked index values for the case of 2 marked index. -/
|
||||
def twoMarkedIndexValue (T : Marked d X 2) (x : ColorsIndex d (T.color (markedPoint X 0)))
|
||||
(y : ColorsIndex d <| T.color <| markedPoint X 1) :
|
||||
T.MarkedIndexValue := fun i =>
|
||||
match i with
|
||||
| 0 => x
|
||||
| 1 => y
|
||||
|
||||
/-- An equivalence of types used to turn the first marked index into an unmarked index. -/
|
||||
def unmarkFirstSet (X : Type) (n : ℕ) : (X ⊕ Fin n.succ) ≃ (X ⊕ Fin 1) ⊕ Fin n :=
|
||||
trans (Equiv.sumCongr (Equiv.refl _)
|
||||
(((Fin.castOrderIso (Nat.succ_eq_one_add n)).toEquiv.trans finSumFinEquiv.symm)))
|
||||
(Equiv.sumAssoc _ _ _).symm
|
||||
|
||||
/-- Unmark the first marked index of a marked tensor. -/
|
||||
def unmarkFirst {X : Type} : Marked d X n.succ ≃ Marked d (X ⊕ Fin 1) n :=
|
||||
mapIso d (unmarkFirstSet X n)
|
||||
|
||||
/-!
|
||||
|
||||
## Marking elements.
|
||||
|
||||
-/
|
||||
section markingElements
|
||||
|
||||
variable [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||||
|
||||
/-- Splits a type based on an embedding from `Fin n` into elements not in the image of the
|
||||
embedding, and elements in the image. -/
|
||||
def markEmbeddingSet {n : ℕ} (f : Fin n ↪ X) :
|
||||
X ≃ {x // x ∈ (Finset.image f Finset.univ)ᶜ} ⊕ Fin n :=
|
||||
(Equiv.Set.sumCompl (Set.range ⇑f)).symm.trans <|
|
||||
(Equiv.sumComm _ _).trans <|
|
||||
Equiv.sumCongr ((Equiv.subtypeEquivRight (by simp))) <|
|
||||
(Function.Embedding.toEquivRange f).symm
|
||||
|
||||
lemma markEmbeddingSet_on_mem {n : ℕ} (f : Fin n ↪ X) (x : X)
|
||||
(hx : x ∈ Finset.image f Finset.univ) : markEmbeddingSet f x =
|
||||
Sum.inr (f.toEquivRange.symm ⟨x, by simpa using hx⟩) := by
|
||||
rw [markEmbeddingSet]
|
||||
simp only [Equiv.trans_apply, Equiv.sumComm_apply, Equiv.sumCongr_apply]
|
||||
rw [Equiv.Set.sumCompl_symm_apply_of_mem]
|
||||
rfl
|
||||
|
||||
lemma markEmbeddingSet_on_not_mem {n : ℕ} (f : Fin n ↪ X) (x : X)
|
||||
(hx : ¬ x ∈ (Finset.image f Finset.univ)) : markEmbeddingSet f x =
|
||||
Sum.inl ⟨x, by simpa using hx⟩ := by
|
||||
rw [markEmbeddingSet]
|
||||
simp only [Equiv.trans_apply, Equiv.sumComm_apply, Equiv.sumCongr_apply]
|
||||
rw [Equiv.Set.sumCompl_symm_apply_of_not_mem]
|
||||
rfl
|
||||
simpa using hx
|
||||
|
||||
/-- Marks the indices of tensor in the image of an embedding. -/
|
||||
@[simps!]
|
||||
def markEmbedding {n : ℕ} (f : Fin n ↪ X) :
|
||||
RealLorentzTensor d X ≃ Marked d {x // x ∈ (Finset.image f Finset.univ)ᶜ} n :=
|
||||
mapIso d (markEmbeddingSet f)
|
||||
|
||||
lemma markEmbeddingSet_on_mem_indexValue_apply {n : ℕ} (f : Fin n ↪ X) (T : RealLorentzTensor d X)
|
||||
(i : IndexValue d (markEmbedding f T).color) (x : X) (hx : x ∈ (Finset.image f Finset.univ)) :
|
||||
i (markEmbeddingSet f x) = colorsIndexCast (congrArg ((markEmbedding f) T).color
|
||||
(markEmbeddingSet_on_mem f x hx).symm)
|
||||
(i (Sum.inr (f.toEquivRange.symm ⟨x, by simpa using hx⟩))) := by
|
||||
simp [colorsIndexCast]
|
||||
symm
|
||||
apply cast_eq_iff_heq.mpr
|
||||
rw [markEmbeddingSet_on_mem f x hx]
|
||||
|
||||
lemma markEmbeddingSet_on_not_mem_indexValue_apply {n : ℕ}
|
||||
(f : Fin n ↪ X) (T : RealLorentzTensor d X) (i : IndexValue d (markEmbedding f T).color)
|
||||
(x : X) (hx : ¬ x ∈ (Finset.image f Finset.univ)) :
|
||||
i (markEmbeddingSet f x) = colorsIndexCast (congrArg ((markEmbedding f) T).color
|
||||
(markEmbeddingSet_on_not_mem f x hx).symm) (i (Sum.inl ⟨x, by simpa using hx⟩)) := by
|
||||
simp [colorsIndexCast]
|
||||
symm
|
||||
apply cast_eq_iff_heq.mpr
|
||||
rw [markEmbeddingSet_on_not_mem f x hx]
|
||||
|
||||
/-- An equivalence between the IndexValues for a tensor `T` and the corresponding
|
||||
tensor with indices maked by an embedding. -/
|
||||
@[simps!]
|
||||
def markEmbeddingIndexValue {n : ℕ} (f : Fin n ↪ X) (T : RealLorentzTensor d X) :
|
||||
IndexValue d T.color ≃ IndexValue d (markEmbedding f T).color :=
|
||||
indexValueIso d (markEmbeddingSet f) (
|
||||
(Equiv.comp_symm_eq (markEmbeddingSet f) ((markEmbedding f) T).color T.color).mp rfl)
|
||||
|
||||
lemma markEmbeddingIndexValue_apply_symm_on_mem {n : ℕ}
|
||||
(f : Fin n.succ ↪ X) (T : RealLorentzTensor d X) (i : IndexValue d (markEmbedding f T).color)
|
||||
(x : X) (hx : x ∈ (Finset.image f Finset.univ)) :
|
||||
(markEmbeddingIndexValue f T).symm i x = (colorsIndexCast ((congrFun ((Equiv.comp_symm_eq
|
||||
(markEmbeddingSet f) ((markEmbedding f) T).color T.color).mp rfl) x).trans
|
||||
(congrArg ((markEmbedding f) T).color (markEmbeddingSet_on_mem f x hx)))).symm
|
||||
(i (Sum.inr (f.toEquivRange.symm ⟨x, by simpa using hx⟩))) := by
|
||||
rw [markEmbeddingIndexValue, indexValueIso_symm_apply']
|
||||
rw [markEmbeddingSet_on_mem_indexValue_apply f T i x hx]
|
||||
simp [colorsIndexCast]
|
||||
|
||||
lemma markEmbeddingIndexValue_apply_symm_on_not_mem {n : ℕ} (f : Fin n.succ ↪ X)
|
||||
(T : RealLorentzTensor d X) (i : IndexValue d (markEmbedding f T).color) (x : X)
|
||||
(hx : ¬ x ∈ (Finset.image f Finset.univ)) : (markEmbeddingIndexValue f T).symm i x =
|
||||
(colorsIndexCast ((congrFun ((Equiv.comp_symm_eq
|
||||
(markEmbeddingSet f) ((markEmbedding f) T).color T.color).mp rfl) x).trans
|
||||
((congrArg ((markEmbedding f) T).color (markEmbeddingSet_on_not_mem f x hx))))).symm
|
||||
(i (Sum.inl ⟨x, by simpa using hx⟩)) := by
|
||||
rw [markEmbeddingIndexValue, indexValueIso_symm_apply']
|
||||
rw [markEmbeddingSet_on_not_mem_indexValue_apply f T i x hx]
|
||||
simp only [Nat.succ_eq_add_one, Function.comp_apply, markEmbedding_apply_color, colorsIndexCast,
|
||||
Equiv.cast_symm, id_eq, eq_mp_eq_cast, eq_mpr_eq_cast, Equiv.cast_apply, cast_cast, cast_eq,
|
||||
Equiv.cast_refl, Equiv.refl_symm]
|
||||
rfl
|
||||
|
||||
/-- Given an equivalence of types, an embedding `f` to an embedding `g`, the equivalence
|
||||
taking the complement of the image of `f` to the complement of the image of `g`. -/
|
||||
@[simps!]
|
||||
def equivEmbedCompl (e : X ≃ Y) {f : Fin n ↪ X} {g : Fin n ↪ Y} (he : f.trans e = g) :
|
||||
{x // x ∈ (Finset.image f Finset.univ)ᶜ} ≃ {y // y ∈ (Finset.image g Finset.univ)ᶜ} :=
|
||||
(Equiv.subtypeEquivOfSubtype' e).trans <|
|
||||
(Equiv.subtypeEquivRight (fun x => by simp [← he, Equiv.eq_symm_apply]))
|
||||
|
||||
lemma markEmbedding_mapIso_right (e : X ≃ Y) (f : Fin n ↪ X) (g : Fin n ↪ Y) (he : f.trans e = g)
|
||||
(T : RealLorentzTensor d X) : markEmbedding g (mapIso d e T) =
|
||||
mapIso d (Equiv.sumCongr (equivEmbedCompl e he) (Equiv.refl (Fin n))) (markEmbedding f T) := by
|
||||
rw [markEmbedding, markEmbedding]
|
||||
erw [← Equiv.trans_apply, ← Equiv.trans_apply]
|
||||
rw [mapIso_trans, mapIso_trans]
|
||||
apply congrFun
|
||||
repeat apply congrArg
|
||||
refine Equiv.ext (fun x => ?_)
|
||||
simp only [Equiv.trans_apply, Equiv.sumCongr_apply, Equiv.coe_refl]
|
||||
by_cases hx : x ∈ Finset.image f Finset.univ
|
||||
· rw [markEmbeddingSet_on_mem f x hx, markEmbeddingSet_on_mem g (e x) (by simpa [← he] using hx)]
|
||||
subst he
|
||||
simp only [Sum.map_inr, id_eq, Sum.inr.injEq, Equiv.symm_apply_eq,
|
||||
Function.Embedding.toEquivRange_apply, Function.Embedding.trans_apply, Equiv.coe_toEmbedding,
|
||||
Subtype.mk.injEq, EmbeddingLike.apply_eq_iff_eq]
|
||||
change x = f.toEquivRange _
|
||||
rw [Equiv.apply_symm_apply]
|
||||
· rw [markEmbeddingSet_on_not_mem f x hx,
|
||||
markEmbeddingSet_on_not_mem g (e x) (by simpa [← he] using hx)]
|
||||
subst he
|
||||
rfl
|
||||
|
||||
lemma markEmbedding_mapIso_left {n m : ℕ} (e : Fin n ≃ Fin m) (f : Fin n ↪ X) (g : Fin m ↪ X)
|
||||
(he : e.symm.toEmbedding.trans f = g) (T : RealLorentzTensor d X) :
|
||||
markEmbedding g T = mapIso d (Equiv.sumCongr (Equiv.subtypeEquivRight (fun x => by
|
||||
simpa [← he] using Equiv.forall_congr_left e)) e) (markEmbedding f T) := by
|
||||
rw [markEmbedding, markEmbedding]
|
||||
erw [← Equiv.trans_apply]
|
||||
rw [mapIso_trans]
|
||||
apply congrFun
|
||||
repeat apply congrArg
|
||||
refine Equiv.ext (fun x => ?_)
|
||||
simp only [Equiv.trans_apply, Equiv.sumCongr_apply]
|
||||
by_cases hx : x ∈ Finset.image f Finset.univ
|
||||
· rw [markEmbeddingSet_on_mem f x hx, markEmbeddingSet_on_mem g x (by
|
||||
simp [← he, hx]
|
||||
obtain ⟨y, _, hy2⟩ := Finset.mem_image.mp hx
|
||||
use e y
|
||||
simpa using hy2)]
|
||||
subst he
|
||||
simp [Equiv.symm_apply_eq]
|
||||
change x = f.toEquivRange _
|
||||
rw [Equiv.apply_symm_apply]
|
||||
· rw [markEmbeddingSet_on_not_mem f x hx, markEmbeddingSet_on_not_mem g x (by
|
||||
simpa [← he, hx] using fun x => not_exists.mp (Finset.mem_image.mpr.mt hx) (e.symm x))]
|
||||
subst he
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Marking a single element
|
||||
|
||||
-/
|
||||
|
||||
/-- An embedding from `Fin 1` into `X` given an element `x ∈ X`. -/
|
||||
@[simps!]
|
||||
def embedSingleton (x : X) : Fin 1 ↪ X :=
|
||||
⟨![x], fun x y => by fin_cases x; fin_cases y; simp⟩
|
||||
|
||||
lemma embedSingleton_toEquivRange_symm (x : X) :
|
||||
(embedSingleton x).toEquivRange.symm ⟨x, by simp⟩ = 0 := by
|
||||
exact Fin.fin_one_eq_zero _
|
||||
|
||||
/-- Equivalence, taking a tensor to a tensor with a single marked index. -/
|
||||
@[simps!]
|
||||
def markSingle (x : X) : RealLorentzTensor d X ≃ Marked d {x' // x' ≠ x} 1 :=
|
||||
(markEmbedding (embedSingleton x)).trans
|
||||
(mapIso d (Equiv.sumCongr (Equiv.subtypeEquivRight (fun x => by simp)) (Equiv.refl _)))
|
||||
|
||||
/-- Equivalence between index values of a tensor and the corresponding tensor with a single
|
||||
marked index. -/
|
||||
@[simps!]
|
||||
def markSingleIndexValue (T : RealLorentzTensor d X) (x : X) :
|
||||
IndexValue d T.color ≃ IndexValue d (markSingle x T).color :=
|
||||
(markEmbeddingIndexValue (embedSingleton x) T).trans <|
|
||||
indexValueIso d (Equiv.sumCongr (Equiv.subtypeEquivRight (fun x => by simp)) (Equiv.refl _))
|
||||
(by funext x_1; simp)
|
||||
|
||||
/-- Given an equivalence of types, taking `x` to `y` the corresponding equivalence of
|
||||
subtypes of elements not equal to `x` and not equal to `y` respectively. -/
|
||||
@[simps!]
|
||||
def equivSingleCompl (e : X ≃ Y) {x : X} {y : Y} (he : e x = y) :
|
||||
{x' // x' ≠ x} ≃ {y' // y' ≠ y} :=
|
||||
(Equiv.subtypeEquivOfSubtype' e).trans <|
|
||||
Equiv.subtypeEquivRight (fun a => by simp [Equiv.symm_apply_eq, he])
|
||||
|
||||
lemma markSingle_mapIso (e : X ≃ Y) (x : X) (y : Y) (he : e x = y)
|
||||
(T : RealLorentzTensor d X) : markSingle y (mapIso d e T) =
|
||||
mapIso d (Equiv.sumCongr (equivSingleCompl e he) (Equiv.refl _)) (markSingle x T) := by
|
||||
rw [markSingle, Equiv.trans_apply]
|
||||
rw [markEmbedding_mapIso_right e (embedSingleton x) (embedSingleton y)
|
||||
(Function.Embedding.ext_iff.mp (fun a => by simpa using he)), markSingle, markEmbedding]
|
||||
erw [← Equiv.trans_apply, ← Equiv.trans_apply, ← Equiv.trans_apply]
|
||||
rw [mapIso_trans, mapIso_trans, mapIso_trans, mapIso_trans]
|
||||
apply congrFun
|
||||
repeat apply congrArg
|
||||
refine Equiv.ext fun x => ?_
|
||||
simp only [ne_eq, Fintype.univ_ofSubsingleton, Fin.zero_eta, Fin.isValue, Equiv.sumCongr_trans,
|
||||
Equiv.trans_refl, Equiv.trans_apply, Equiv.sumCongr_apply, Equiv.coe_trans, Equiv.coe_refl,
|
||||
Sum.map_map, CompTriple.comp_eq]
|
||||
subst he
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Marking two elements
|
||||
|
||||
-/
|
||||
|
||||
/-- An embedding from `Fin 2` given two inequivalent elements. -/
|
||||
@[simps!]
|
||||
def embedDoubleton (x y : X) (h : x ≠ y) : Fin 2 ↪ X :=
|
||||
⟨![x, y], fun a b => by
|
||||
fin_cases a <;> fin_cases b <;> simp [h]
|
||||
exact h.symm⟩
|
||||
|
||||
end markingElements
|
||||
|
||||
end Marked
|
||||
|
||||
/-!
|
||||
|
||||
## Contraction of indices
|
||||
|
||||
-/
|
||||
|
||||
open Marked
|
||||
|
||||
/-- The contraction of the marked indices in a tensor with two marked indices. -/
|
||||
def contr {X : Type} (T : Marked d X 2) (h : T.markedColor 0 = τ (T.markedColor 1)) :
|
||||
RealLorentzTensor d X where
|
||||
color := T.unmarkedColor
|
||||
coord := fun i =>
|
||||
∑ x, T.coord (splitIndexValue.symm (i, T.twoMarkedIndexValue x $ colorsIndexDualCast h x))
|
||||
|
||||
/-! TODO: Following the ethos of modular operads, prove properties of contraction. -/
|
||||
|
||||
/-! TODO: Use `contr` to generalize to any pair of marked index. -/
|
||||
|
||||
/-!
|
||||
|
||||
## Rising and lowering indices
|
||||
|
||||
Rising or lowering an index corresponds to changing the color of that index.
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: Define the rising and lowering of indices using contraction with the metric. -/
|
||||
|
||||
/-!
|
||||
|
||||
## Graphical species and Lorentz tensors
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: From Lorentz tensors graphical species. -/
|
||||
/-! TODO: Show that the action of the Lorentz group defines an action on the graphical species. -/
|
||||
|
||||
end RealLorentzTensor
|
|
@ -1,401 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzTensor.Real.Basic
|
||||
import HepLean.SpaceTime.LorentzTensor.Real.LorentzAction
|
||||
import HepLean.SpaceTime.LorentzTensor.Real.Multiplication
|
||||
/-!
|
||||
|
||||
# Constructors for real Lorentz tensors
|
||||
|
||||
In this file we will constructors of real Lorentz tensors from real numbers,
|
||||
vectors and matrices.
|
||||
|
||||
We will derive properties of these constructors.
|
||||
|
||||
-/
|
||||
|
||||
namespace RealLorentzTensor
|
||||
/-!
|
||||
|
||||
# Tensors from and to the reals
|
||||
|
||||
An important point that we shall see here is that there is a well defined map
|
||||
to the real numbers, i.e. which is invariant under transformations of mapIso.
|
||||
|
||||
-/
|
||||
|
||||
/-- An equivalence from Real tensors on an empty set to `ℝ`. -/
|
||||
@[simps!]
|
||||
def toReal (d : ℕ) {X : Type} (h : IsEmpty X) : RealLorentzTensor d X ≃ ℝ where
|
||||
toFun := fun T => T.coord (IsEmpty.elim h)
|
||||
invFun := fun r => {
|
||||
color := fun x => IsEmpty.elim h x,
|
||||
coord := fun _ => r}
|
||||
left_inv T := by
|
||||
refine ext ?_ ?_
|
||||
funext x
|
||||
exact IsEmpty.elim h x
|
||||
funext a
|
||||
change T.coord (IsEmpty.elim h) = _
|
||||
apply congrArg
|
||||
funext x
|
||||
exact IsEmpty.elim h x
|
||||
right_inv x := rfl
|
||||
|
||||
/-- The real number obtained from a tensor is invariant under `mapIso`. -/
|
||||
lemma toReal_mapIso (d : ℕ) {X Y : Type} (h : IsEmpty X) (f : X ≃ Y) :
|
||||
(mapIso d f).trans (toReal d (Equiv.isEmpty f.symm)) = toReal d h := by
|
||||
apply Equiv.ext
|
||||
intro x
|
||||
simp only [Equiv.trans_apply, toReal_apply, mapIso_apply_color, mapIso_apply_coord]
|
||||
apply congrArg
|
||||
funext x
|
||||
exact IsEmpty.elim h x
|
||||
|
||||
/-!
|
||||
|
||||
# Tensors from reals, vectors and matrices
|
||||
|
||||
Note that that these definitions are not equivariant with respect to an
|
||||
action of the Lorentz group. They are provided for constructive purposes.
|
||||
|
||||
-/
|
||||
|
||||
/-- A marked 1-tensor with a single up index constructed from a vector.
|
||||
|
||||
Note: This is not the same as rising indices on `ofVecDown`. -/
|
||||
def ofVecUp {d : ℕ} (v : Fin 1 ⊕ Fin d → ℝ) :
|
||||
Marked d Empty 1 where
|
||||
color := fun _ => Colors.up
|
||||
coord := fun i => v <| i <| Sum.inr <| 0
|
||||
|
||||
/-- A marked 1-tensor with a single down index constructed from a vector.
|
||||
|
||||
Note: This is not the same as lowering indices on `ofVecUp`. -/
|
||||
def ofVecDown {d : ℕ} (v : Fin 1 ⊕ Fin d → ℝ) :
|
||||
Marked d Empty 1 where
|
||||
color := fun _ => Colors.down
|
||||
coord := fun i => v <| i <| Sum.inr <| 0
|
||||
|
||||
/-- A tensor with two up indices constructed from a matrix.
|
||||
|
||||
Note: This is not the same as rising or lowering indices on other `ofMat...`. -/
|
||||
def ofMatUpUp {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
Marked d Empty 2 where
|
||||
color := fun _ => Colors.up
|
||||
coord := fun i => m (i (Sum.inr 0)) (i (Sum.inr 1))
|
||||
|
||||
/-- A tensor with two down indices constructed from a matrix.
|
||||
|
||||
Note: This is not the same as rising or lowering indices on other `ofMat...`. -/
|
||||
def ofMatDownDown {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
Marked d Empty 2 where
|
||||
color := fun _ => Colors.down
|
||||
coord := fun i => m (i (Sum.inr 0)) (i (Sum.inr 1))
|
||||
|
||||
/-- A marked 2-tensor with the first index up and the second index down.
|
||||
|
||||
Note: This is not the same as rising or lowering indices on other `ofMat...`. -/
|
||||
@[simps!]
|
||||
def ofMatUpDown {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
Marked d Empty 2 where
|
||||
color := fun i => match i with
|
||||
| Sum.inr 0 => Colors.up
|
||||
| Sum.inr 1 => Colors.down
|
||||
coord := fun i => m (i (Sum.inr 0)) (i (Sum.inr 1))
|
||||
|
||||
/-- A marked 2-tensor with the first index down and the second index up.
|
||||
|
||||
Note: This is not the same as rising or lowering indices on other `ofMat...`. -/
|
||||
def ofMatDownUp {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
Marked d Empty 2 where
|
||||
color := fun i => match i with
|
||||
| Sum.inr 0 => Colors.down
|
||||
| Sum.inr 1 => Colors.up
|
||||
coord := fun i => m (i (Sum.inr 0)) (i (Sum.inr 1))
|
||||
|
||||
/-!
|
||||
|
||||
## Equivalence of `IndexValue` for constructors
|
||||
|
||||
-/
|
||||
|
||||
/-- Index values for `ofVecUp v` are equivalent to elements of `Fin 1 ⊕ Fin d`. -/
|
||||
def ofVecUpIndexValue (v : Fin 1 ⊕ Fin d → ℝ) :
|
||||
IndexValue d (ofVecUp v).color ≃ (Fin 1 ⊕ Fin d) where
|
||||
toFun i := i (Sum.inr 0)
|
||||
invFun x := fun i => match i with
|
||||
| Sum.inr 0 => x
|
||||
left_inv i := by
|
||||
funext y
|
||||
match y with
|
||||
| Sum.inr 0 => rfl
|
||||
right_inv x := rfl
|
||||
|
||||
/-- Index values for `ofVecDown v` are equivalent to elements of `Fin 1 ⊕ Fin d`. -/
|
||||
def ofVecDownIndexValue (v : Fin 1 ⊕ Fin d → ℝ) :
|
||||
IndexValue d (ofVecDown v).color ≃ (Fin 1 ⊕ Fin d) where
|
||||
toFun i := i (Sum.inr 0)
|
||||
invFun x := fun i => match i with
|
||||
| Sum.inr 0 => x
|
||||
left_inv i := by
|
||||
funext y
|
||||
match y with
|
||||
| Sum.inr 0 => rfl
|
||||
right_inv x := rfl
|
||||
|
||||
/-- Index values for `ofMatUpUp v` are equivalent to elements of
|
||||
`(Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d)`. -/
|
||||
def ofMatUpUpIndexValue (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
IndexValue d (ofMatUpUp M).color ≃ (Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d) where
|
||||
toFun i := (i (Sum.inr 0), i (Sum.inr 1))
|
||||
invFun x := fun i => match i with
|
||||
| Sum.inr 0 => x.1
|
||||
| Sum.inr 1 => x.2
|
||||
left_inv i := by
|
||||
funext y
|
||||
match y with
|
||||
| Sum.inr 0 => rfl
|
||||
| Sum.inr 1 => rfl
|
||||
right_inv x := rfl
|
||||
|
||||
/-- Index values for `ofMatDownDown v` are equivalent to elements of
|
||||
`(Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d)`. -/
|
||||
def ofMatDownDownIndexValue (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
IndexValue d (ofMatDownDown M).color ≃ (Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d) where
|
||||
toFun i := (i (Sum.inr 0), i (Sum.inr 1))
|
||||
invFun x := fun i => match i with
|
||||
| Sum.inr 0 => x.1
|
||||
| Sum.inr 1 => x.2
|
||||
left_inv i := by
|
||||
funext y
|
||||
match y with
|
||||
| Sum.inr 0 => rfl
|
||||
| Sum.inr 1 => rfl
|
||||
right_inv x := rfl
|
||||
|
||||
/-- Index values for `ofMatUpDown v` are equivalent to elements of
|
||||
`(Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d)`. -/
|
||||
def ofMatUpDownIndexValue (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
IndexValue d (ofMatUpDown M).color ≃ (Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d) where
|
||||
toFun i := (i (Sum.inr 0), i (Sum.inr 1))
|
||||
invFun x := fun i => match i with
|
||||
| Sum.inr 0 => x.1
|
||||
| Sum.inr 1 => x.2
|
||||
left_inv i := by
|
||||
funext y
|
||||
match y with
|
||||
| Sum.inr 0 => rfl
|
||||
| Sum.inr 1 => rfl
|
||||
right_inv x := rfl
|
||||
|
||||
/-- Index values for `ofMatDownUp v` are equivalent to elements of
|
||||
`(Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d)`. -/
|
||||
def ofMatDownUpIndexValue (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
IndexValue d (ofMatDownUp M).color ≃ (Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d) where
|
||||
toFun i := (i (Sum.inr 0), i (Sum.inr 1))
|
||||
invFun x := fun i => match i with
|
||||
| Sum.inr 0 => x.1
|
||||
| Sum.inr 1 => x.2
|
||||
left_inv i := by
|
||||
funext y
|
||||
match y with
|
||||
| Sum.inr 0 => rfl
|
||||
| Sum.inr 1 => rfl
|
||||
right_inv x := rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Contraction of indices of tensors from matrices
|
||||
|
||||
-/
|
||||
open Matrix
|
||||
open Marked
|
||||
|
||||
/-- Contracting the indices of `ofMatUpDown` returns the trace of the matrix. -/
|
||||
lemma contr_ofMatUpDown_eq_trace {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
contr (ofMatUpDown M) (by rfl) = (toReal d instIsEmptyEmpty).symm M.trace := by
|
||||
refine ext ?_ rfl
|
||||
· funext i
|
||||
exact Empty.elim i
|
||||
|
||||
/-- Contracting the indices of `ofMatDownUp` returns the trace of the matrix. -/
|
||||
lemma contr_ofMatDownUp_eq_trace {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
contr (ofMatDownUp M) (by rfl) = (toReal d instIsEmptyEmpty).symm M.trace := by
|
||||
refine ext ?_ rfl
|
||||
· funext i
|
||||
exact Empty.elim i
|
||||
|
||||
/-!
|
||||
|
||||
## Multiplication of tensors from vectors and matrices
|
||||
|
||||
-/
|
||||
|
||||
/-- Multiplying `ofVecUp` with `ofVecDown` gives the dot product. -/
|
||||
@[simp]
|
||||
lemma mul_ofVecUp_ofVecDown_eq_dot_prod {d : ℕ} (v₁ v₂ : Fin 1 ⊕ Fin d → ℝ) :
|
||||
mul (ofVecUp v₁) (ofVecDown v₂) rfl = (toReal d instIsEmptySum).symm (v₁ ⬝ᵥ v₂) := by
|
||||
refine ext ?_ rfl
|
||||
· funext i
|
||||
exact IsEmpty.elim instIsEmptySum i
|
||||
|
||||
/-- Multiplying `ofVecDown` with `ofVecUp` gives the dot product. -/
|
||||
@[simp]
|
||||
lemma mul_ofVecDown_ofVecUp_eq_dot_prod {d : ℕ} (v₁ v₂ : Fin 1 ⊕ Fin d → ℝ) :
|
||||
mul (ofVecDown v₁) (ofVecUp v₂) rfl = (toReal d instIsEmptySum).symm (v₁ ⬝ᵥ v₂) := by
|
||||
refine ext ?_ rfl
|
||||
· funext i
|
||||
exact IsEmpty.elim instIsEmptySum i
|
||||
|
||||
lemma mul_ofMatUpDown_ofVecUp_eq_mulVec {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ)
|
||||
(v : Fin 1 ⊕ Fin d → ℝ) :
|
||||
mapIso d ((Equiv.sumEmpty (Empty ⊕ Fin 1) Empty))
|
||||
(mul (unmarkFirst $ ofMatUpDown M) (ofVecUp v) rfl) = ofVecUp (M *ᵥ v) := by
|
||||
refine ext ?_ rfl
|
||||
· funext i
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, mapIso_apply_color, mul_color, Equiv.symm_symm]
|
||||
fin_cases i
|
||||
rfl
|
||||
|
||||
lemma mul_ofMatDownUp_ofVecDown_eq_mulVec {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ)
|
||||
(v : Fin 1 ⊕ Fin d → ℝ) :
|
||||
mapIso d (Equiv.sumEmpty (Empty ⊕ Fin 1) Empty)
|
||||
(mul (unmarkFirst $ ofMatDownUp M) (ofVecDown v) rfl) = ofVecDown (M *ᵥ v) := by
|
||||
refine ext ?_ rfl
|
||||
· funext i
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, mapIso_apply_color, mul_color, Equiv.symm_symm]
|
||||
fin_cases i
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## The Lorentz action on constructors
|
||||
|
||||
-/
|
||||
section lorentzAction
|
||||
variable {d : ℕ} {X : Type} [Fintype X] [DecidableEq X] (T : RealLorentzTensor d X) (c : X → Colors)
|
||||
variable (Λ Λ' : LorentzGroup d)
|
||||
|
||||
open Matrix
|
||||
|
||||
/-- The action of the Lorentz group on `ofReal v` is trivial. -/
|
||||
@[simp]
|
||||
lemma lorentzAction_toReal (h : IsEmpty X) (r : ℝ) :
|
||||
Λ • (toReal d h).symm r = (toReal d h).symm r :=
|
||||
lorentzAction_on_isEmpty Λ ((toReal d h).symm r)
|
||||
|
||||
/-- The action of the Lorentz group on `ofVecUp v` is by vector multiplication. -/
|
||||
@[simp]
|
||||
lemma lorentzAction_ofVecUp (v : Fin 1 ⊕ Fin d → ℝ) :
|
||||
Λ • ofVecUp v = ofVecUp (Λ *ᵥ v) := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
erw [lorentzAction_smul_coord]
|
||||
simp only [ofVecUp, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||||
Finset.prod_empty, one_mul]
|
||||
rw [mulVec]
|
||||
simp only [Fin.isValue, dotProduct, Finset.univ_unique, Fin.default_eq_zero,
|
||||
Finset.sum_singleton]
|
||||
erw [Finset.sum_equiv (ofVecUpIndexValue v)]
|
||||
intro i
|
||||
simp_all only [Finset.mem_univ, Fin.isValue, Equiv.coe_fn_mk]
|
||||
intro j _
|
||||
simp_all only [Finset.mem_univ, Fin.isValue, Finset.prod_singleton, indexValueIso_refl]
|
||||
rfl
|
||||
|
||||
/-- The action of the Lorentz group on `ofVecDown v` is
|
||||
by vector multiplication of the transpose-inverse. -/
|
||||
@[simp]
|
||||
lemma lorentzAction_ofVecDown (v : Fin 1 ⊕ Fin d → ℝ) :
|
||||
Λ • ofVecDown v = ofVecDown ((LorentzGroup.transpose Λ⁻¹) *ᵥ v) := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
erw [lorentzAction_smul_coord]
|
||||
simp only [ofVecDown, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||||
Finset.prod_empty, one_mul, lorentzGroupIsGroup_inv]
|
||||
rw [mulVec]
|
||||
simp only [Fin.isValue, dotProduct, Finset.univ_unique, Fin.default_eq_zero,
|
||||
Finset.sum_singleton]
|
||||
erw [Finset.sum_equiv (ofVecUpIndexValue v)]
|
||||
intro i
|
||||
simp_all only [Finset.mem_univ, Fin.isValue, Equiv.coe_fn_mk]
|
||||
intro j _
|
||||
simp_all only [Finset.mem_univ, Fin.isValue, Finset.prod_singleton, indexValueIso_refl]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma lorentzAction_ofMatUpUp (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
Λ • ofMatUpUp M = ofMatUpUp (Λ.1 * M * (LorentzGroup.transpose Λ).1) := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
erw [lorentzAction_smul_coord]
|
||||
erw [← Equiv.sum_comp (ofMatUpUpIndexValue M).symm]
|
||||
simp only [ofMatUpUp, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||||
Finset.prod_empty, one_mul, mul_apply]
|
||||
erw [Finset.sum_product]
|
||||
rw [Finset.sum_comm]
|
||||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||||
rw [Finset.sum_mul]
|
||||
refine Finset.sum_congr rfl (fun y _ => ?_)
|
||||
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
|
||||
exact mul_right_comm _ _ _
|
||||
|
||||
@[simp]
|
||||
lemma lorentzAction_ofMatDownDown (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
Λ • ofMatDownDown M = ofMatDownDown ((LorentzGroup.transpose Λ⁻¹).1 * M * (Λ⁻¹).1) := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
erw [lorentzAction_smul_coord]
|
||||
erw [← Equiv.sum_comp (ofMatDownDownIndexValue M).symm]
|
||||
simp only [ofMatDownDown, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||||
Finset.prod_empty, one_mul, mul_apply]
|
||||
erw [Finset.sum_product]
|
||||
rw [Finset.sum_comm]
|
||||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||||
rw [Finset.sum_mul]
|
||||
refine Finset.sum_congr rfl (fun y _ => ?_)
|
||||
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
|
||||
exact mul_right_comm _ _ _
|
||||
|
||||
@[simp]
|
||||
lemma lorentzAction_ofMatUpDown (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
Λ • ofMatUpDown M = ofMatUpDown (Λ.1 * M * (Λ⁻¹).1) := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
erw [lorentzAction_smul_coord]
|
||||
erw [← Equiv.sum_comp (ofMatUpDownIndexValue M).symm]
|
||||
simp only [ofMatUpDown, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||||
Finset.prod_empty, one_mul, mul_apply]
|
||||
erw [Finset.sum_product]
|
||||
rw [Finset.sum_comm]
|
||||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||||
rw [Finset.sum_mul]
|
||||
refine Finset.sum_congr rfl (fun y _ => ?_)
|
||||
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
|
||||
exact mul_right_comm _ _ _
|
||||
|
||||
@[simp]
|
||||
lemma lorentzAction_ofMatDownUp (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||||
Λ • ofMatDownUp M =
|
||||
ofMatDownUp ((LorentzGroup.transpose Λ⁻¹).1 * M * (LorentzGroup.transpose Λ).1) := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
erw [lorentzAction_smul_coord]
|
||||
erw [← Equiv.sum_comp (ofMatDownUpIndexValue M).symm]
|
||||
simp only [ofMatDownUp, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||||
Finset.prod_empty, one_mul, mul_apply]
|
||||
erw [Finset.sum_product]
|
||||
rw [Finset.sum_comm]
|
||||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||||
rw [Finset.sum_mul]
|
||||
refine Finset.sum_congr rfl (fun y _ => ?_)
|
||||
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
|
||||
exact mul_right_comm _ _ _
|
||||
|
||||
end lorentzAction
|
||||
|
||||
end RealLorentzTensor
|
|
@ -1,444 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzTensor.Real.Basic
|
||||
import HepLean.SpaceTime.LorentzGroup.Basic
|
||||
/-!
|
||||
|
||||
# Lorentz group action on Real Lorentz Tensors
|
||||
|
||||
We define the action of the Lorentz group on Real Lorentz Tensors.
|
||||
|
||||
The Lorentz action is currently only defined for finite and decidable types `X`.
|
||||
|
||||
-/
|
||||
|
||||
namespace RealLorentzTensor
|
||||
|
||||
variable {d : ℕ} {X Y : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||||
(T : RealLorentzTensor d X) (c : X → Colors) (Λ Λ' : LorentzGroup d) {μ : Colors}
|
||||
|
||||
open LorentzGroup BigOperators Marked
|
||||
|
||||
/-- Monoid homomorphism from the Lorentz group to matrices indexed by `ColorsIndex d μ` for a
|
||||
color `μ`.
|
||||
|
||||
This can be thought of as the representation of the Lorentz group for that color index. -/
|
||||
def colorMatrix (μ : Colors) : LorentzGroup d →* Matrix (ColorsIndex d μ) (ColorsIndex d μ) ℝ where
|
||||
toFun Λ := match μ with
|
||||
| .up => fun i j => Λ.1 i j
|
||||
| .down => fun i j => (LorentzGroup.transpose Λ⁻¹).1 i j
|
||||
map_one' := by
|
||||
match μ with
|
||||
| .up =>
|
||||
simp only [lorentzGroupIsGroup_one_coe]
|
||||
ext i j
|
||||
simp only [OfNat.ofNat, One.one, ColorsIndex]
|
||||
congr
|
||||
| .down =>
|
||||
simp only [transpose, inv_one, lorentzGroupIsGroup_one_coe, Matrix.transpose_one]
|
||||
ext i j
|
||||
simp only [OfNat.ofNat, One.one, ColorsIndex]
|
||||
congr
|
||||
map_mul' Λ Λ' := by
|
||||
match μ with
|
||||
| .up =>
|
||||
ext i j
|
||||
simp only [lorentzGroupIsGroup_mul_coe]
|
||||
| .down =>
|
||||
ext i j
|
||||
simp only [transpose, mul_inv_rev, lorentzGroupIsGroup_inv, lorentzGroupIsGroup_mul_coe,
|
||||
Matrix.transpose_mul, Matrix.transpose_apply]
|
||||
rfl
|
||||
|
||||
lemma colorMatrix_cast {μ ν : Colors} (h : μ = ν) (Λ : LorentzGroup d) :
|
||||
colorMatrix μ Λ =
|
||||
Matrix.reindex (colorsIndexCast h).symm (colorsIndexCast h).symm (colorMatrix ν Λ) := by
|
||||
subst h
|
||||
rfl
|
||||
|
||||
lemma colorMatrix_dual_cast {μ : Colors} (Λ : LorentzGroup d) :
|
||||
colorMatrix (τ μ) Λ = Matrix.reindex (colorsIndexDualCastSelf) (colorsIndexDualCastSelf)
|
||||
(colorMatrix μ (LorentzGroup.transpose Λ⁻¹)) := by
|
||||
match μ with
|
||||
| .up => rfl
|
||||
| .down =>
|
||||
ext i j
|
||||
simp only [τ, colorMatrix, MonoidHom.coe_mk, OneHom.coe_mk, colorsIndexDualCastSelf, transpose,
|
||||
lorentzGroupIsGroup_inv, Matrix.transpose_apply, minkowskiMetric.dual_transpose,
|
||||
minkowskiMetric.dual_dual, Matrix.reindex_apply, Equiv.coe_fn_symm_mk, Matrix.submatrix_apply]
|
||||
lemma colorMatrix_transpose {μ : Colors} (Λ : LorentzGroup d) :
|
||||
colorMatrix μ (LorentzGroup.transpose Λ) = (colorMatrix μ Λ).transpose := by
|
||||
match μ with
|
||||
| .up => rfl
|
||||
| .down =>
|
||||
ext i j
|
||||
simp only [colorMatrix, transpose, lorentzGroupIsGroup_inv, Matrix.transpose_apply,
|
||||
MonoidHom.coe_mk, OneHom.coe_mk, minkowskiMetric.dual_transpose]
|
||||
|
||||
/-!
|
||||
|
||||
## Lorentz group to tensor representation matrices.
|
||||
|
||||
-/
|
||||
|
||||
/-- The matrix representation of the Lorentz group given a color of index. -/
|
||||
@[simps!]
|
||||
def toTensorRepMat {c : X → Colors} :
|
||||
LorentzGroup d →* Matrix (IndexValue d c) (IndexValue d c) ℝ where
|
||||
toFun Λ := fun i j => ∏ x, colorMatrix (c x) Λ (i x) (j x)
|
||||
map_one' := by
|
||||
ext i j
|
||||
by_cases hij : i = j
|
||||
· subst hij
|
||||
simp only [map_one, Matrix.one_apply_eq, Finset.prod_const_one]
|
||||
· obtain ⟨x, hijx⟩ := Function.ne_iff.mp hij
|
||||
simp only [map_one]
|
||||
rw [@Finset.prod_eq_zero _ _ _ _ _ x]
|
||||
exact Eq.symm (Matrix.one_apply_ne' fun a => hij (id (Eq.symm a)))
|
||||
exact Finset.mem_univ x
|
||||
exact Matrix.one_apply_ne' (id (Ne.symm hijx))
|
||||
map_mul' Λ Λ' := by
|
||||
ext i j
|
||||
rw [Matrix.mul_apply]
|
||||
trans ∑ (k : IndexValue d c), ∏ x,
|
||||
(colorMatrix (c x) Λ (i x) (k x)) * (colorMatrix (c x) Λ' (k x) (j x))
|
||||
have h1 : ∑ (k : IndexValue d c), ∏ x,
|
||||
(colorMatrix (c x) Λ (i x) (k x)) * (colorMatrix (c x) Λ' (k x) (j x)) =
|
||||
∏ x, ∑ y, (colorMatrix (c x) Λ (i x) y) * (colorMatrix (c x) Λ' y (j x)) := by
|
||||
rw [Finset.prod_sum]
|
||||
simp only [Finset.prod_attach_univ, Finset.sum_univ_pi]
|
||||
rfl
|
||||
rw [h1]
|
||||
simp only [map_mul]
|
||||
rfl
|
||||
refine Finset.sum_congr rfl (fun k _ => ?_)
|
||||
rw [Finset.prod_mul_distrib]
|
||||
|
||||
lemma toTensorRepMat_mul' (i j : IndexValue d c) :
|
||||
toTensorRepMat (Λ * Λ') i j = ∑ (k : IndexValue d c),
|
||||
∏ x, colorMatrix (c x) Λ (i x) (k x) * colorMatrix (c x) Λ' (k x) (j x) := by
|
||||
simp [Matrix.mul_apply, IndexValue]
|
||||
refine Finset.sum_congr rfl (fun k _ => ?_)
|
||||
rw [Finset.prod_mul_distrib]
|
||||
rfl
|
||||
|
||||
lemma toTensorRepMat_of_indexValueSumEquiv {cX : X → Colors} {cY : Y → Colors}
|
||||
(i j : IndexValue d (Sum.elim cX cY)) :
|
||||
toTensorRepMat Λ i j = toTensorRepMat Λ (indexValueSumEquiv i).1 (indexValueSumEquiv j).1 *
|
||||
toTensorRepMat Λ (indexValueSumEquiv i).2 (indexValueSumEquiv j).2 :=
|
||||
Fintype.prod_sum_type fun x => (colorMatrix (Sum.elim cX cY x)) Λ (i x) (j x)
|
||||
|
||||
lemma toTensorRepMat_of_indexValueSumEquiv' {cX : X → Colors} {cY : Y → Colors}
|
||||
(i j : IndexValue d cX) (k l : IndexValue d cY) :
|
||||
toTensorRepMat Λ i j * toTensorRepMat Λ k l =
|
||||
toTensorRepMat Λ (indexValueSumEquiv.symm (i, k)) (indexValueSumEquiv.symm (j, l)) :=
|
||||
(Fintype.prod_sum_type fun x => (colorMatrix (Sum.elim cX cY x)) Λ
|
||||
(indexValueSumEquiv.symm (i, k) x) (indexValueSumEquiv.symm (j, l) x)).symm
|
||||
|
||||
/-!
|
||||
|
||||
## Tensor representation matrices and marked tensors.
|
||||
|
||||
-/
|
||||
|
||||
lemma toTensorRepMat_of_splitIndexValue' (T : Marked d X n)
|
||||
(i j : T.UnmarkedIndexValue) (k l : T.MarkedIndexValue) :
|
||||
toTensorRepMat Λ i j * toTensorRepMat Λ k l =
|
||||
toTensorRepMat Λ (splitIndexValue.symm (i, k)) (splitIndexValue.symm (j, l)) :=
|
||||
(Fintype.prod_sum_type fun x =>
|
||||
(colorMatrix (T.color x)) Λ (splitIndexValue.symm (i, k) x) (splitIndexValue.symm (j, l) x)).symm
|
||||
|
||||
lemma toTensorRepMat_oneMarkedIndexValue_dual (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor 0 = τ (S.markedColor 0)) (x : ColorsIndex d (T.markedColor 0))
|
||||
(k : S.MarkedIndexValue) :
|
||||
toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k =
|
||||
toTensorRepMat Λ⁻¹ (oneMarkedIndexValue
|
||||
$ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm k)
|
||||
(oneMarkedIndexValue x) := by
|
||||
rw [toTensorRepMat_apply, toTensorRepMat_apply]
|
||||
erw [Finset.prod_singleton, Finset.prod_singleton]
|
||||
simp only [Fin.zero_eta, Fin.isValue, lorentzGroupIsGroup_inv]
|
||||
rw [colorMatrix_cast h, colorMatrix_dual_cast]
|
||||
rw [Matrix.reindex_apply, Matrix.reindex_apply]
|
||||
simp only [Fin.isValue, lorentzGroupIsGroup_inv, minkowskiMetric.dual_dual, Subtype.coe_eta,
|
||||
Equiv.symm_symm, Matrix.submatrix_apply]
|
||||
rw [colorMatrix_transpose]
|
||||
simp only [Fin.isValue, Matrix.transpose_apply]
|
||||
apply congrArg
|
||||
simp only [Fin.isValue, oneMarkedIndexValue, colorsIndexDualCast, Equiv.coe_fn_symm_mk,
|
||||
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.coe_fn_mk, Equiv.apply_symm_apply,
|
||||
Equiv.symm_apply_apply]
|
||||
|
||||
lemma toTensorRepMap_sum_dual (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor 0 = τ (S.markedColor 0)) (j : T.MarkedIndexValue) (k : S.MarkedIndexValue) :
|
||||
∑ x, toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k
|
||||
* toTensorRepMat Λ (oneMarkedIndexValue x) j =
|
||||
toTensorRepMat 1
|
||||
(oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm k) j := by
|
||||
trans ∑ x, toTensorRepMat Λ⁻¹ (oneMarkedIndexValue$ (colorsIndexDualCast h).symm $
|
||||
oneMarkedIndexValue.symm k) (oneMarkedIndexValue x) * toTensorRepMat Λ (oneMarkedIndexValue x) j
|
||||
apply Finset.sum_congr rfl (fun x _ => ?_)
|
||||
rw [toTensorRepMat_oneMarkedIndexValue_dual]
|
||||
rw [← Equiv.sum_comp oneMarkedIndexValue.symm]
|
||||
change ∑ i, toTensorRepMat Λ⁻¹ (oneMarkedIndexValue $ (colorsIndexDualCast h).symm $
|
||||
oneMarkedIndexValue.symm k) i * toTensorRepMat Λ i j = _
|
||||
rw [← Matrix.mul_apply, ← toTensorRepMat.map_mul, inv_mul_self Λ]
|
||||
|
||||
lemma toTensorRepMat_one_coord_sum (T : Marked d X n) (i : T.UnmarkedIndexValue)
|
||||
(k : T.MarkedIndexValue) : T.coord (splitIndexValue.symm (i, k)) = ∑ j, toTensorRepMat 1 k j *
|
||||
T.coord (splitIndexValue.symm (i, j)) := by
|
||||
erw [Finset.sum_eq_single_of_mem k]
|
||||
simp only [IndexValue, map_one, Matrix.one_apply_eq, one_mul]
|
||||
exact Finset.mem_univ k
|
||||
intro j _ hjk
|
||||
simp [hjk, IndexValue]
|
||||
exact Or.inl (Matrix.one_apply_ne' hjk)
|
||||
|
||||
/-!
|
||||
|
||||
## Definition of the Lorentz group action on Real Lorentz Tensors.
|
||||
|
||||
-/
|
||||
|
||||
/-- Action of the Lorentz group on `X`-indexed Real Lorentz Tensors. -/
|
||||
@[simps!]
|
||||
instance lorentzAction : MulAction (LorentzGroup d) (RealLorentzTensor d X) where
|
||||
smul Λ T := {color := T.color,
|
||||
coord := fun i => ∑ j, toTensorRepMat Λ i j * T.coord j}
|
||||
one_smul T := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
simp only [HSMul.hSMul, map_one]
|
||||
erw [Finset.sum_eq_single_of_mem i]
|
||||
simp only [Matrix.one_apply_eq, one_mul, IndexValue]
|
||||
rfl
|
||||
exact Finset.mem_univ i
|
||||
exact fun j _ hij => mul_eq_zero.mpr (Or.inl (Matrix.one_apply_ne' hij))
|
||||
mul_smul Λ Λ' T := by
|
||||
refine ext rfl ?_
|
||||
simp only [HSMul.hSMul]
|
||||
funext i
|
||||
have h1 : ∑ j : IndexValue d T.color, toTensorRepMat (Λ * Λ') i j
|
||||
* T.coord j = ∑ j : IndexValue d T.color, ∑ (k : IndexValue d T.color),
|
||||
(∏ x, ((colorMatrix (T.color x) Λ (i x) (k x)) *
|
||||
(colorMatrix (T.color x) Λ' (k x) (j x)))) * T.coord j := by
|
||||
refine Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [toTensorRepMat_mul', Finset.sum_mul]
|
||||
rw [h1]
|
||||
rw [Finset.sum_comm]
|
||||
refine Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [Finset.mul_sum]
|
||||
refine Finset.sum_congr rfl (fun k _ => ?_)
|
||||
simp only [toTensorRepMat, IndexValue]
|
||||
rw [← mul_assoc]
|
||||
congr
|
||||
rw [Finset.prod_mul_distrib]
|
||||
rfl
|
||||
|
||||
lemma lorentzAction_smul_coord' {d : ℕ} {X : Type} [Fintype X] [DecidableEq X] (Λ : ↑(𝓛 d))
|
||||
(T : RealLorentzTensor d X) (i : IndexValue d T.color) :
|
||||
(Λ • T).coord i = ∑ j : IndexValue d T.color, toTensorRepMat Λ i j * T.coord j := by
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Properties of the Lorentz action.
|
||||
|
||||
-/
|
||||
|
||||
/-- The action on an empty Lorentz tensor is trivial. -/
|
||||
lemma lorentzAction_on_isEmpty [IsEmpty X] (Λ : LorentzGroup d) (T : RealLorentzTensor d X) :
|
||||
Λ • T = T := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
erw [lorentzAction_smul_coord]
|
||||
simp only [Finset.univ_unique, Finset.univ_eq_empty, Finset.prod_empty, one_mul,
|
||||
Finset.sum_singleton, toTensorRepMat_apply]
|
||||
simp only [IndexValue, Unique.eq_default, Finset.univ_unique, Finset.sum_const,
|
||||
Finset.card_singleton, one_smul]
|
||||
|
||||
/-- The Lorentz action commutes with `mapIso`. -/
|
||||
lemma lorentzAction_mapIso (f : X ≃ Y) (Λ : LorentzGroup d) (T : RealLorentzTensor d X) :
|
||||
mapIso d f (Λ • T) = Λ • (mapIso d f T) := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
rw [mapIso_apply_coord]
|
||||
rw [lorentzAction_smul_coord', lorentzAction_smul_coord']
|
||||
let is : IndexValue d T.color ≃ IndexValue d ((mapIso d f) T).color :=
|
||||
indexValueIso d f ((Equiv.comp_symm_eq f ((mapIso d f) T).color T.color).mp rfl)
|
||||
rw [← Equiv.sum_comp is]
|
||||
refine Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [mapIso_apply_coord]
|
||||
refine Mathlib.Tactic.Ring.mul_congr ?_ ?_ rfl
|
||||
· simp only [IndexValue, toTensorRepMat, MonoidHom.coe_mk, OneHom.coe_mk, mapIso_apply_color,
|
||||
indexValueIso_refl]
|
||||
rw [← Equiv.prod_comp f]
|
||||
apply Finset.prod_congr rfl (fun x _ => ?_)
|
||||
have h1 : (T.color (f.symm (f x))) = T.color x := by
|
||||
simp only [Equiv.symm_apply_apply]
|
||||
rw [colorMatrix_cast h1]
|
||||
apply congrArg
|
||||
simp only [is]
|
||||
erw [indexValueIso_eq_symm, indexValueIso_symm_apply']
|
||||
simp only [colorsIndexCast, Function.comp_apply, mapIso_apply_color, Equiv.cast_refl,
|
||||
Equiv.refl_symm, Equiv.refl_apply, Equiv.cast_apply]
|
||||
symm
|
||||
refine cast_eq_iff_heq.mpr ?_
|
||||
congr
|
||||
exact Equiv.symm_apply_apply f x
|
||||
· apply congrArg
|
||||
exact (Equiv.apply_eq_iff_eq_symm_apply (indexValueIso d f (mapIso.proof_1 d f T))).mp rfl
|
||||
|
||||
/-!
|
||||
|
||||
## The Lorentz action on marked tensors.
|
||||
|
||||
-/
|
||||
|
||||
@[simps!]
|
||||
instance : MulAction (LorentzGroup d) (Marked d X n) := lorentzAction
|
||||
|
||||
/-- Action of the Lorentz group on just marked indices. -/
|
||||
@[simps!]
|
||||
def markedLorentzAction : MulAction (LorentzGroup d) (Marked d X n) where
|
||||
smul Λ T := {
|
||||
color := T.color,
|
||||
coord := fun i => ∑ j, toTensorRepMat Λ (splitIndexValue i).2 j *
|
||||
T.coord (splitIndexValue.symm ((splitIndexValue i).1, j))}
|
||||
one_smul T := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
simp only [HSMul.hSMul, map_one]
|
||||
erw [Finset.sum_eq_single_of_mem (splitIndexValue i).2]
|
||||
erw [Matrix.one_apply_eq (splitIndexValue i).2]
|
||||
simp only [IndexValue, one_mul, indexValueIso_refl, Equiv.refl_apply]
|
||||
apply congrArg
|
||||
exact Equiv.symm_apply_apply splitIndexValue i
|
||||
exact Finset.mem_univ (splitIndexValue i).2
|
||||
exact fun j _ hij => mul_eq_zero.mpr (Or.inl (Matrix.one_apply_ne' hij))
|
||||
mul_smul Λ Λ' T := by
|
||||
refine ext rfl ?_
|
||||
simp only [HSMul.hSMul]
|
||||
funext i
|
||||
have h1 : ∑ (j : T.MarkedIndexValue), toTensorRepMat (Λ * Λ') (splitIndexValue i).2 j
|
||||
* T.coord (splitIndexValue.symm ((splitIndexValue i).1, j)) =
|
||||
∑ (j : T.MarkedIndexValue), ∑ (k : T.MarkedIndexValue),
|
||||
(∏ x, ((colorMatrix (T.markedColor x) Λ ((splitIndexValue i).2 x) (k x)) *
|
||||
(colorMatrix (T.markedColor x) Λ' (k x) (j x)))) *
|
||||
T.coord (splitIndexValue.symm ((splitIndexValue i).1, j)) := by
|
||||
refine Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [toTensorRepMat_mul', Finset.sum_mul]
|
||||
rfl
|
||||
erw [h1]
|
||||
rw [Finset.sum_comm]
|
||||
refine Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [Finset.mul_sum]
|
||||
refine Finset.sum_congr rfl (fun k _ => ?_)
|
||||
simp only [toTensorRepMat, IndexValue]
|
||||
rw [← mul_assoc]
|
||||
congr
|
||||
rw [Finset.prod_mul_distrib]
|
||||
rfl
|
||||
|
||||
/-- Action of the Lorentz group on just unmarked indices. -/
|
||||
@[simps!]
|
||||
def unmarkedLorentzAction : MulAction (LorentzGroup d) (Marked d X n) where
|
||||
smul Λ T := {
|
||||
color := T.color,
|
||||
coord := fun i => ∑ j, toTensorRepMat Λ (splitIndexValue i).1 j *
|
||||
T.coord (splitIndexValue.symm (j, (splitIndexValue i).2))}
|
||||
one_smul T := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
simp only [HSMul.hSMul, map_one]
|
||||
erw [Finset.sum_eq_single_of_mem (splitIndexValue i).1]
|
||||
erw [Matrix.one_apply_eq (splitIndexValue i).1]
|
||||
simp only [IndexValue, one_mul, indexValueIso_refl, Equiv.refl_apply]
|
||||
apply congrArg
|
||||
exact Equiv.symm_apply_apply splitIndexValue i
|
||||
exact Finset.mem_univ (splitIndexValue i).1
|
||||
exact fun j _ hij => mul_eq_zero.mpr (Or.inl (Matrix.one_apply_ne' hij))
|
||||
mul_smul Λ Λ' T := by
|
||||
refine ext rfl ?_
|
||||
simp only [HSMul.hSMul]
|
||||
funext i
|
||||
have h1 : ∑ (j : T.UnmarkedIndexValue), toTensorRepMat (Λ * Λ') (splitIndexValue i).1 j
|
||||
* T.coord (splitIndexValue.symm (j, (splitIndexValue i).2)) =
|
||||
∑ (j : T.UnmarkedIndexValue), ∑ (k : T.UnmarkedIndexValue),
|
||||
(∏ x, ((colorMatrix (T.unmarkedColor x) Λ ((splitIndexValue i).1 x) (k x)) *
|
||||
(colorMatrix (T.unmarkedColor x) Λ' (k x) (j x)))) *
|
||||
T.coord (splitIndexValue.symm (j, (splitIndexValue i).2)) := by
|
||||
refine Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [toTensorRepMat_mul', Finset.sum_mul]
|
||||
rfl
|
||||
erw [h1]
|
||||
rw [Finset.sum_comm]
|
||||
refine Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [Finset.mul_sum]
|
||||
refine Finset.sum_congr rfl (fun k _ => ?_)
|
||||
simp only [toTensorRepMat, IndexValue]
|
||||
rw [← mul_assoc]
|
||||
congr
|
||||
rw [Finset.prod_mul_distrib]
|
||||
rfl
|
||||
|
||||
/-- Notation for `markedLorentzAction.smul`. -/
|
||||
scoped[RealLorentzTensor] infixr:73 " •ₘ " => markedLorentzAction.smul
|
||||
|
||||
/-- Notation for `unmarkedLorentzAction.smul`. -/
|
||||
scoped[RealLorentzTensor] infixr:73 " •ᵤₘ " => unmarkedLorentzAction.smul
|
||||
|
||||
/-- Acting on unmarked and then marked indices is equivalent to acting on all indices. -/
|
||||
lemma marked_unmarked_action_eq_action (T : Marked d X n) : Λ •ₘ (Λ •ᵤₘ T) = Λ • T := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
change ∑ j, toTensorRepMat Λ (splitIndexValue i).2 j *
|
||||
(∑ k, toTensorRepMat Λ (splitIndexValue i).1 k * T.coord (splitIndexValue.symm (k, j))) = _
|
||||
trans ∑ j, ∑ k, (toTensorRepMat Λ (splitIndexValue i).2 j *
|
||||
toTensorRepMat Λ (splitIndexValue i).1 k) * T.coord (splitIndexValue.symm (k, j))
|
||||
apply Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [Finset.mul_sum]
|
||||
apply Finset.sum_congr rfl (fun k _ => ?_)
|
||||
exact Eq.symm (mul_assoc _ _ _)
|
||||
trans ∑ j, ∑ k, (toTensorRepMat Λ i (splitIndexValue.symm (k, j))
|
||||
* T.coord (splitIndexValue.symm (k, j)))
|
||||
apply Finset.sum_congr rfl (fun j _ => (Finset.sum_congr rfl (fun k _ => ?_)))
|
||||
rw [mul_comm (toTensorRepMat _ _ _), toTensorRepMat_of_splitIndexValue']
|
||||
simp only [IndexValue, Finset.mem_univ, Prod.mk.eta, Equiv.symm_apply_apply]
|
||||
trans ∑ p, (toTensorRepMat Λ i p * T.coord p)
|
||||
rw [← Equiv.sum_comp splitIndexValue.symm, Fintype.sum_prod_type, Finset.sum_comm]
|
||||
rfl
|
||||
rfl
|
||||
|
||||
/-- Acting on marked and then unmarked indices is equivalent to acting on all indices. -/
|
||||
lemma unmarked_marked_action_eq_action (T : Marked d X n) : Λ •ᵤₘ (Λ •ₘ T) = Λ • T := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
change ∑ j, toTensorRepMat Λ (splitIndexValue i).1 j *
|
||||
(∑ k, toTensorRepMat Λ (splitIndexValue i).2 k * T.coord (splitIndexValue.symm (j, k))) = _
|
||||
trans ∑ j, ∑ k, (toTensorRepMat Λ (splitIndexValue i).1 j *
|
||||
toTensorRepMat Λ (splitIndexValue i).2 k) * T.coord (splitIndexValue.symm (j, k))
|
||||
apply Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [Finset.mul_sum]
|
||||
apply Finset.sum_congr rfl (fun k _ => ?_)
|
||||
exact Eq.symm (mul_assoc _ _ _)
|
||||
trans ∑ j, ∑ k, (toTensorRepMat Λ i (splitIndexValue.symm (j, k))
|
||||
* T.coord (splitIndexValue.symm (j, k)))
|
||||
apply Finset.sum_congr rfl (fun j _ => (Finset.sum_congr rfl (fun k _ => ?_)))
|
||||
rw [toTensorRepMat_of_splitIndexValue']
|
||||
simp only [IndexValue, Finset.mem_univ, Prod.mk.eta, Equiv.symm_apply_apply]
|
||||
trans ∑ p, (toTensorRepMat Λ i p * T.coord p)
|
||||
rw [← Equiv.sum_comp splitIndexValue.symm, Fintype.sum_prod_type]
|
||||
rfl
|
||||
rfl
|
||||
|
||||
/-- The marked and unmarked actions commute. -/
|
||||
lemma marked_unmarked_action_comm (T : Marked d X n) : Λ •ᵤₘ (Λ •ₘ T) = Λ •ₘ (Λ •ᵤₘ T) := by
|
||||
rw [unmarked_marked_action_eq_action, marked_unmarked_action_eq_action]
|
||||
|
||||
/-! TODO: Show that the Lorentz action commutes with contraction. -/
|
||||
/-! TODO: Show that the Lorentz action commutes with rising and lowering indices. -/
|
||||
end RealLorentzTensor
|
|
@ -1,485 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzTensor.Real.Basic
|
||||
import HepLean.SpaceTime.LorentzTensor.Real.LorentzAction
|
||||
/-!
|
||||
|
||||
# Multiplication of Real Lorentz Tensors along an index
|
||||
|
||||
We define the multiplication of two singularly marked Lorentz tensors along the
|
||||
marked index. This is equivalent to contracting two Lorentz tensors.
|
||||
|
||||
We prove various results about this multiplication.
|
||||
|
||||
-/
|
||||
/-! TODO: Set up a good notation for the multiplication. -/
|
||||
|
||||
namespace RealLorentzTensor
|
||||
|
||||
variable {d : ℕ} {X Y : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||||
(T : RealLorentzTensor d X) (c : X → Colors) (Λ Λ' : LorentzGroup d) {μ : Colors}
|
||||
|
||||
open Marked
|
||||
|
||||
/-- The contraction of the marked indices of two tensors each with one marked index, which
|
||||
is dual to the others. The contraction is done via
|
||||
`φ^μ ψ_μ = φ^0 ψ_0 + φ^1 ψ_1 + ...`. -/
|
||||
@[simps!]
|
||||
def mul {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor 0 = τ (S.markedColor 0)) :
|
||||
RealLorentzTensor d (X ⊕ Y) where
|
||||
color := Sum.elim T.unmarkedColor S.unmarkedColor
|
||||
coord := fun i => ∑ x,
|
||||
T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, oneMarkedIndexValue x)) *
|
||||
S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2,
|
||||
oneMarkedIndexValue $ colorsIndexDualCast h x))
|
||||
|
||||
/-- The index value appearing in the multiplication of Marked tensors on the left. -/
|
||||
def mulFstArg {X Y : Type} {T : Marked d X 1} {S : Marked d Y 1}
|
||||
(i : IndexValue d (Sum.elim T.unmarkedColor S.unmarkedColor))
|
||||
(x : ColorsIndex d (T.color (markedPoint X 0))) : IndexValue d T.color :=
|
||||
splitIndexValue.symm ((indexValueSumEquiv i).1, oneMarkedIndexValue x)
|
||||
|
||||
lemma mulFstArg_inr {X Y : Type} {T : Marked d X 1} {S : Marked d Y 1}
|
||||
(i : IndexValue d (Sum.elim T.unmarkedColor S.unmarkedColor))
|
||||
(x : ColorsIndex d (T.color (markedPoint X 0))) :
|
||||
mulFstArg i x (Sum.inr 0) = x := by
|
||||
rfl
|
||||
|
||||
lemma mulFstArg_inl {X Y : Type} {T : Marked d X 1} {S : Marked d Y 1}
|
||||
(i : IndexValue d (Sum.elim T.unmarkedColor S.unmarkedColor))
|
||||
(x : ColorsIndex d (T.color (markedPoint X 0))) (c : X):
|
||||
mulFstArg i x (Sum.inl c) = i (Sum.inl c) := by
|
||||
rfl
|
||||
|
||||
/-- The index value appearing in the multiplication of Marked tensors on the right. -/
|
||||
def mulSndArg {X Y : Type} {T : Marked d X 1} {S : Marked d Y 1}
|
||||
(i : IndexValue d (Sum.elim T.unmarkedColor S.unmarkedColor))
|
||||
(x : ColorsIndex d (T.color (markedPoint X 0))) (h : T.markedColor 0 = τ (S.markedColor 0)) :
|
||||
IndexValue d S.color :=
|
||||
splitIndexValue.symm ((indexValueSumEquiv i).2, oneMarkedIndexValue $ colorsIndexDualCast h x)
|
||||
|
||||
/-!
|
||||
|
||||
## Expressions for multiplication
|
||||
|
||||
-/
|
||||
/-! TODO: Where appropriate write these expresions in terms of `indexValueDualIso`. -/
|
||||
lemma mul_colorsIndex_right {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor 0 = τ (S.markedColor 0)) :
|
||||
(mul T S h).coord = fun i => ∑ x,
|
||||
T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1,
|
||||
oneMarkedIndexValue $ colorsIndexDualCast (color_eq_dual_symm h) x)) *
|
||||
S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, oneMarkedIndexValue x)) := by
|
||||
funext i
|
||||
rw [← Equiv.sum_comp (colorsIndexDualCast h)]
|
||||
apply Finset.sum_congr rfl (fun x _ => ?_)
|
||||
congr
|
||||
rw [← colorsIndexDualCast_symm]
|
||||
exact (Equiv.apply_eq_iff_eq_symm_apply (colorsIndexDualCast h)).mp rfl
|
||||
|
||||
lemma mul_indexValue_left {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor 0 = τ (S.markedColor 0)) :
|
||||
(mul T S h).coord = fun i => ∑ j,
|
||||
T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j)) *
|
||||
S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2,
|
||||
(oneMarkedIndexValue $ (colorsIndexDualCast h) $ oneMarkedIndexValue.symm j))) := by
|
||||
funext i
|
||||
rw [← Equiv.sum_comp (oneMarkedIndexValue)]
|
||||
rfl
|
||||
|
||||
lemma mul_indexValue_right {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor 0 = τ (S.markedColor 0)) :
|
||||
(mul T S h).coord = fun i => ∑ j,
|
||||
T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1,
|
||||
oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm j)) *
|
||||
S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, j)) := by
|
||||
funext i
|
||||
rw [mul_colorsIndex_right]
|
||||
rw [← Equiv.sum_comp (oneMarkedIndexValue)]
|
||||
apply Finset.sum_congr rfl (fun x _ => ?_)
|
||||
congr
|
||||
exact Eq.symm (colorsIndexDualCast_symm h)
|
||||
|
||||
/-!
|
||||
|
||||
## Properties of multiplication
|
||||
|
||||
-/
|
||||
|
||||
/-- Multiplication is well behaved with regard to swapping tensors. -/
|
||||
lemma mul_symm {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor 0 = τ (S.markedColor 0)) :
|
||||
mapIso d (Equiv.sumComm X Y) (mul T S h) = mul S T (color_eq_dual_symm h) := by
|
||||
refine ext ?_ ?_
|
||||
· funext a
|
||||
cases a with
|
||||
| inl _ => rfl
|
||||
| inr _ => rfl
|
||||
· funext i
|
||||
rw [mul_colorsIndex_right]
|
||||
refine Fintype.sum_congr _ _ (fun x => ?_)
|
||||
rw [mul_comm]
|
||||
rfl
|
||||
|
||||
/-- Multiplication commutes with `mapIso`. -/
|
||||
lemma mul_mapIso {X Y Z : Type} (T : Marked d X 1) (S : Marked d Y 1) (f : X ≃ W)
|
||||
(g : Y ≃ Z) (h : T.markedColor 0 = τ (S.markedColor 0)) :
|
||||
mapIso d (Equiv.sumCongr f g) (mul T S h) = mul (mapIso d (Equiv.sumCongr f (Equiv.refl _)) T)
|
||||
(mapIso d (Equiv.sumCongr g (Equiv.refl _)) S) h := by
|
||||
refine ext ?_ ?_
|
||||
· funext a
|
||||
cases a with
|
||||
| inl _ => rfl
|
||||
| inr _ => rfl
|
||||
· funext i
|
||||
rw [mapIso_apply_coord, mul_coord, mul_coord]
|
||||
refine Fintype.sum_congr _ _ (fun x => ?_)
|
||||
rw [mapIso_apply_coord, mapIso_apply_coord]
|
||||
refine Mathlib.Tactic.Ring.mul_congr ?_ ?_ rfl
|
||||
· apply congrArg
|
||||
exact (Equiv.symm_apply_eq splitIndexValue).mpr rfl
|
||||
· apply congrArg
|
||||
exact (Equiv.symm_apply_eq splitIndexValue).mpr rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Lorentz action and multiplication.
|
||||
|
||||
-/
|
||||
|
||||
/-- The marked Lorentz Action leaves multiplication invariant. -/
|
||||
lemma mul_markedLorentzAction (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor 0 = τ (S.markedColor 1)) :
|
||||
mul (Λ •ₘ T) (Λ •ₘ S) h = mul T S h := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
change ∑ x, (∑ j, toTensorRepMat Λ (oneMarkedIndexValue x) j *
|
||||
T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j))) *
|
||||
(∑ k, toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k *
|
||||
S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k))) = _
|
||||
trans ∑ x, ∑ j, ∑ k, (toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k
|
||||
* toTensorRepMat Λ (oneMarkedIndexValue x) j) *
|
||||
T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j))
|
||||
* S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k))
|
||||
apply Finset.sum_congr rfl (fun x _ => ?_)
|
||||
rw [Finset.sum_mul_sum]
|
||||
apply Finset.sum_congr rfl (fun j _ => ?_)
|
||||
apply Finset.sum_congr rfl (fun k _ => ?_)
|
||||
ring
|
||||
rw [Finset.sum_comm]
|
||||
trans ∑ j, ∑ k, ∑ x, (toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k
|
||||
* toTensorRepMat Λ (oneMarkedIndexValue x) j) *
|
||||
T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j))
|
||||
* S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k))
|
||||
apply Finset.sum_congr rfl (fun j _ => ?_)
|
||||
rw [Finset.sum_comm]
|
||||
trans ∑ j, ∑ k, (toTensorRepMat 1
|
||||
(oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm k) j) *
|
||||
T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j))
|
||||
* S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k))
|
||||
apply Finset.sum_congr rfl (fun j _ => Finset.sum_congr rfl (fun k _ => ?_))
|
||||
rw [← Finset.sum_mul, ← Finset.sum_mul]
|
||||
erw [toTensorRepMap_sum_dual]
|
||||
rfl
|
||||
rw [Finset.sum_comm]
|
||||
trans ∑ k,
|
||||
T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1,
|
||||
(oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm k)))*
|
||||
S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k))
|
||||
apply Finset.sum_congr rfl (fun k _ => ?_)
|
||||
rw [← Finset.sum_mul, ← toTensorRepMat_one_coord_sum T]
|
||||
rw [← Equiv.sum_comp (oneMarkedIndexValue)]
|
||||
erw [← Equiv.sum_comp (colorsIndexDualCast h)]
|
||||
simp
|
||||
rfl
|
||||
|
||||
/-- The unmarked Lorentz Action commutes with multiplication. -/
|
||||
lemma mul_unmarkedLorentzAction (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor 0 = τ (S.markedColor 1)) :
|
||||
mul (Λ •ᵤₘ T) (Λ •ᵤₘ S) h = Λ • mul T S h := by
|
||||
refine ext rfl ?_
|
||||
funext i
|
||||
change ∑ x, (∑ j, toTensorRepMat Λ (indexValueSumEquiv i).1 j *
|
||||
T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))*
|
||||
∑ k, toTensorRepMat Λ (indexValueSumEquiv i).2 k *
|
||||
S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) = _
|
||||
trans ∑ x, ∑ j, ∑ k, (toTensorRepMat Λ (indexValueSumEquiv i).1 j *
|
||||
T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))*
|
||||
toTensorRepMat Λ (indexValueSumEquiv i).2 k *
|
||||
S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x))
|
||||
· apply Finset.sum_congr rfl (fun x _ => ?_)
|
||||
rw [Finset.sum_mul_sum ]
|
||||
apply Finset.sum_congr rfl (fun j _ => ?_)
|
||||
apply Finset.sum_congr rfl (fun k _ => ?_)
|
||||
ring
|
||||
rw [Finset.sum_comm]
|
||||
trans ∑ j, ∑ k, ∑ x, (toTensorRepMat Λ (indexValueSumEquiv i).1 j *
|
||||
T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))*
|
||||
toTensorRepMat Λ (indexValueSumEquiv i).2 k *
|
||||
S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x))
|
||||
· exact Finset.sum_congr rfl (fun j _ => Finset.sum_comm)
|
||||
trans ∑ j, ∑ k,
|
||||
((toTensorRepMat Λ (indexValueSumEquiv i).1 j) * toTensorRepMat Λ (indexValueSumEquiv i).2 k)
|
||||
* ∑ x, (T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))
|
||||
* S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x))
|
||||
· apply Finset.sum_congr rfl (fun j _ => Finset.sum_congr rfl (fun k _ => ?_))
|
||||
rw [Finset.mul_sum]
|
||||
apply Finset.sum_congr rfl (fun x _ => ?_)
|
||||
ring
|
||||
trans ∑ j, ∑ k, toTensorRepMat Λ i (indexValueSumEquiv.symm (j, k)) *
|
||||
∑ x, (T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))
|
||||
* S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x))
|
||||
apply Finset.sum_congr rfl (fun j _ => Finset.sum_congr rfl (fun k _ => ?_))
|
||||
· rw [toTensorRepMat_of_indexValueSumEquiv']
|
||||
congr
|
||||
simp only [IndexValue, Finset.mem_univ, Prod.mk.eta, Equiv.symm_apply_apply, mul_color]
|
||||
trans ∑ p, toTensorRepMat Λ i p *
|
||||
∑ x, (T.coord (splitIndexValue.symm ((indexValueSumEquiv p).1, oneMarkedIndexValue x)))
|
||||
* S.coord (splitIndexValue.symm ((indexValueSumEquiv p).2,
|
||||
oneMarkedIndexValue $ colorsIndexDualCast h x))
|
||||
· erw [← Equiv.sum_comp indexValueSumEquiv.symm]
|
||||
exact Eq.symm Fintype.sum_prod_type
|
||||
rfl
|
||||
|
||||
/-- The Lorentz action commutes with multiplication. -/
|
||||
lemma mul_lorentzAction (T : Marked d X 1) (S : Marked d Y 1)
|
||||
(h : T.markedColor 0 = τ (S.markedColor 1)) :
|
||||
mul (Λ • T) (Λ • S) h = Λ • mul T S h := by
|
||||
simp only [← marked_unmarked_action_eq_action]
|
||||
rw [mul_markedLorentzAction, mul_unmarkedLorentzAction]
|
||||
|
||||
/-!
|
||||
|
||||
## Multiplication on selected indices
|
||||
|
||||
-/
|
||||
|
||||
variable {n m : ℕ} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||||
{X' Y' Z : Type} [Fintype X'] [DecidableEq X'] [Fintype Y'] [DecidableEq Y']
|
||||
[Fintype Z] [DecidableEq Z]
|
||||
|
||||
/-- The multiplication of two real Lorentz Tensors along specified indices. -/
|
||||
@[simps!]
|
||||
def mulS (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y) (x : X) (y : Y)
|
||||
(h : T.color x = τ (S.color y)) : RealLorentzTensor d ({x' // x' ≠ x} ⊕ {y' // y' ≠ y}) :=
|
||||
mul (markSingle x T) (markSingle y S) h
|
||||
|
||||
/-- The first index value appearing in the multiplication of two Lorentz tensors. -/
|
||||
def mulSFstArg {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y}
|
||||
(i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor))
|
||||
(a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))) :
|
||||
IndexValue d T.color := (markSingleIndexValue T x).symm (mulFstArg i a)
|
||||
|
||||
lemma mulSFstArg_ext {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y}
|
||||
{i j : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)}
|
||||
{a b : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))}
|
||||
(hij : i = j) (hab : a = b) : mulSFstArg i a = mulSFstArg j b := by
|
||||
subst hij; subst hab
|
||||
rfl
|
||||
|
||||
lemma mulSFstArg_on_mem {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y}
|
||||
(i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor))
|
||||
(a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))) :
|
||||
mulSFstArg i a x = a := by
|
||||
rw [mulSFstArg, markSingleIndexValue]
|
||||
simp only [ne_eq, Fintype.univ_ofSubsingleton, Fin.zero_eta, Fin.isValue, Equiv.symm_trans_apply,
|
||||
Sum.map_inr, id_eq]
|
||||
erw [markEmbeddingIndexValue_apply_symm_on_mem]
|
||||
swap
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Finset.univ_unique, Fin.default_eq_zero,
|
||||
Fin.isValue, Finset.image_singleton, embedSingleton_apply, Finset.mem_singleton]
|
||||
rw [indexValueIso_symm_apply']
|
||||
erw [Equiv.symm_apply_eq, Equiv.symm_apply_eq]
|
||||
simp only [Function.comp_apply, colorsIndexCast, Equiv.cast_symm, Equiv.cast_apply, cast_cast]
|
||||
symm
|
||||
apply cast_eq_iff_heq.mpr
|
||||
rw [embedSingleton_toEquivRange_symm]
|
||||
rfl
|
||||
|
||||
lemma mulSFstArg_on_not_mem {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y}
|
||||
(i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor))
|
||||
(a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0)))
|
||||
(c : X) (hc : c ≠ x) : mulSFstArg i a c = i (Sum.inl ⟨c, hc⟩) := by
|
||||
rw [mulSFstArg, markSingleIndexValue]
|
||||
simp only [ne_eq, Fintype.univ_ofSubsingleton, Fin.zero_eta, Fin.isValue, Equiv.symm_trans_apply,
|
||||
Sum.map_inr, id_eq]
|
||||
erw [markEmbeddingIndexValue_apply_symm_on_not_mem]
|
||||
swap
|
||||
simpa using hc
|
||||
rfl
|
||||
|
||||
/-- The second index value appearing in the multiplication of two Lorentz tensors. -/
|
||||
def mulSSndArg {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y}
|
||||
(i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor))
|
||||
(a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0)))
|
||||
(h : T.color x = τ (S.color y)) : IndexValue d S.color :=
|
||||
(markSingleIndexValue S y).symm (mulSndArg i a h)
|
||||
|
||||
lemma mulSSndArg_on_mem {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y}
|
||||
(i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor))
|
||||
(a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0)))
|
||||
(h : T.color x = τ (S.color y)) : mulSSndArg i a h y = colorsIndexDualCast h a := by
|
||||
rw [mulSSndArg, markSingleIndexValue]
|
||||
simp only [ne_eq, Fintype.univ_ofSubsingleton, Fin.zero_eta, Fin.isValue, Equiv.symm_trans_apply,
|
||||
Sum.map_inr, id_eq]
|
||||
erw [markEmbeddingIndexValue_apply_symm_on_mem]
|
||||
swap
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Finset.univ_unique, Fin.default_eq_zero,
|
||||
Fin.isValue, Finset.image_singleton, embedSingleton_apply, Finset.mem_singleton]
|
||||
rw [indexValueIso_symm_apply']
|
||||
erw [Equiv.symm_apply_eq, Equiv.symm_apply_eq]
|
||||
simp only [Function.comp_apply, colorsIndexCast, Equiv.cast_symm, Equiv.cast_apply, cast_cast]
|
||||
symm
|
||||
apply cast_eq_iff_heq.mpr
|
||||
rw [embedSingleton_toEquivRange_symm]
|
||||
rfl
|
||||
|
||||
lemma mulSSndArg_on_not_mem {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y}
|
||||
(i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor))
|
||||
(a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0)))
|
||||
(h : T.color x = τ (S.color y)) (c : Y) (hc : c ≠ y) :
|
||||
mulSSndArg i a h c = i (Sum.inr ⟨c, hc⟩) := by
|
||||
rw [mulSSndArg, markSingleIndexValue]
|
||||
simp only [ne_eq, Fintype.univ_ofSubsingleton, Fin.zero_eta, Fin.isValue, Equiv.symm_trans_apply,
|
||||
Sum.map_inr, id_eq]
|
||||
erw [markEmbeddingIndexValue_apply_symm_on_not_mem]
|
||||
swap
|
||||
simpa using hc
|
||||
rfl
|
||||
|
||||
lemma mulSSndArg_ext {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y}
|
||||
{i j : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)}
|
||||
{a b : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))}
|
||||
(h : T.color x = τ (S.color y)) (hij : i = j) (hab : a = b) :
|
||||
mulSSndArg i a h = mulSSndArg j b h := by
|
||||
subst hij
|
||||
subst hab
|
||||
rfl
|
||||
|
||||
lemma mulS_coord_arg (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y) (x : X) (y : Y)
|
||||
(h : T.color x = τ (S.color y))
|
||||
(i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)) :
|
||||
(mulS T S x y h).coord i = ∑ a, T.coord (mulSFstArg i a) * S.coord (mulSSndArg i a h) := by
|
||||
rfl
|
||||
|
||||
lemma mulS_mapIso (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y)
|
||||
(eX : X ≃ X') (eY : Y ≃ Y') (x : X) (y : Y) (x' : X') (y' : Y') (hx : eX x = x')
|
||||
(hy : eY y = y') (h : T.color x = τ (S.color y)) :
|
||||
mulS (mapIso d eX T) (mapIso d eY S) x' y' (by subst hx hy; simpa using h) =
|
||||
mapIso d (Equiv.sumCongr (equivSingleCompl eX hx) (equivSingleCompl eY hy))
|
||||
(mulS T S x y h) := by
|
||||
rw [mulS, mulS, mul_mapIso]
|
||||
congr 1 <;> rw [markSingle_mapIso]
|
||||
|
||||
lemma mulS_lorentzAction (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y)
|
||||
(x : X) (y : Y) (h : T.color x = τ (S.color y)) (Λ : LorentzGroup d) :
|
||||
mulS (Λ • T) (Λ • S) x y h = Λ • mulS T S x y h := by
|
||||
rw [mulS, mulS, ← mul_lorentzAction]
|
||||
congr 1
|
||||
all_goals
|
||||
rw [markSingle, markEmbedding, Equiv.trans_apply]
|
||||
erw [lorentzAction_mapIso, lorentzAction_mapIso]
|
||||
rfl
|
||||
|
||||
lemma mulS_symm (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y)
|
||||
(x : X) (y : Y) (h : T.color x = τ (S.color y)) :
|
||||
mapIso d (Equiv.sumComm _ _) (mulS T S x y h) = mulS S T y x (color_eq_dual_symm h) := by
|
||||
rw [mulS, mulS, mul_symm]
|
||||
|
||||
/-- An equivalence of types associated with multiplying two consecutive indices,
|
||||
with the second index appearing on the left. -/
|
||||
def mulSSplitLeft {y y' : Y} (hy : y ≠ y') (z : Z) :
|
||||
{yz // yz ≠ (Sum.inl ⟨y, hy⟩ : {y'' // y'' ≠ y'} ⊕ {z' // z' ≠ z})} ≃
|
||||
{y'' // y'' ≠ y' ∧ y'' ≠ y} ⊕ {z' // z' ≠ z} :=
|
||||
Equiv.subtypeSum.trans <|
|
||||
Equiv.sumCongr (
|
||||
(Equiv.subtypeEquivRight (fun a => by
|
||||
obtain ⟨a, p⟩ := a; simp only [ne_eq, Sum.inl.injEq, Subtype.mk.injEq])).trans
|
||||
(Equiv.subtypeSubtypeEquivSubtypeInter _ _)) <|
|
||||
Equiv.subtypeUnivEquiv (fun a => Sum.inr_ne_inl)
|
||||
|
||||
/-- An equivalence of types associated with multiplying two consecutive indices with the
|
||||
second index appearing on the right. -/
|
||||
def mulSSplitRight {y y' : Y} (hy : y ≠ y') (z : Z) :
|
||||
{yz // yz ≠ (Sum.inr ⟨y', hy.symm⟩ : {z' // z' ≠ z} ⊕ {y'' // y'' ≠ y})} ≃
|
||||
{z' // z' ≠ z} ⊕ {y'' // y'' ≠ y' ∧ y'' ≠ y} :=
|
||||
Equiv.subtypeSum.trans <|
|
||||
Equiv.sumCongr (Equiv.subtypeUnivEquiv (fun a => Sum.inl_ne_inr)) <|
|
||||
(Equiv.subtypeEquivRight (fun a => by
|
||||
obtain ⟨a, p⟩ := a; simp only [ne_eq, Sum.inr.injEq, Subtype.mk.injEq])).trans <|
|
||||
((Equiv.subtypeSubtypeEquivSubtypeInter _ _).trans
|
||||
(Equiv.subtypeEquivRight (fun y'' => And.comm)))
|
||||
|
||||
/-- An equivalence of types associated with the associativity property of multiplication. -/
|
||||
def mulSAssocIso (x : X) {y y' : Y} (hy : y ≠ y') (z : Z) :
|
||||
{x' // x' ≠ x} ⊕ {yz // yz ≠ (Sum.inl ⟨y, hy⟩ : {y'' // y'' ≠ y'} ⊕ {z' // z' ≠ z})}
|
||||
≃ {xy // xy ≠ (Sum.inr ⟨y', hy.symm⟩ : {x' // x' ≠ x} ⊕ {y'' // y'' ≠ y})} ⊕ {z' // z' ≠ z} :=
|
||||
(Equiv.sumCongr (Equiv.refl _) (mulSSplitLeft hy z)).trans <|
|
||||
(Equiv.sumAssoc _ _ _).symm.trans <|
|
||||
(Equiv.sumCongr (mulSSplitRight hy x).symm (Equiv.refl _))
|
||||
|
||||
lemma mulS_assoc_color {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y}
|
||||
{U : RealLorentzTensor d Z} {x : X} {y y' : Y} (hy : y ≠ y') {z : Z}
|
||||
(h : T.color x = τ (S.color y))
|
||||
(h' : S.color y' = τ (U.color z)) : (mulS (mulS T S x y h) U (Sum.inr ⟨y', hy.symm⟩) z h').color
|
||||
= (mapIso d (mulSAssocIso x hy z) (mulS T (mulS S U y' z h') x (Sum.inl ⟨y, hy⟩) h)).color := by
|
||||
funext a
|
||||
match a with
|
||||
| .inl ⟨.inl _, _⟩ => rfl
|
||||
| .inl ⟨.inr _, _⟩ => rfl
|
||||
| .inr _ => rfl
|
||||
|
||||
/-- An equivalence of index values associated with the associativity property of multiplication. -/
|
||||
def mulSAssocIndexValue {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y}
|
||||
{U : RealLorentzTensor d Z} {x : X} {y y' : Y} (hy : y ≠ y') {z : Z}
|
||||
(h : T.color x = τ (S.color y)) (h' : S.color y' = τ (U.color z)) :
|
||||
IndexValue d ((T.mulS S x y h).mulS U (Sum.inr ⟨y', hy.symm⟩) z h').color ≃
|
||||
IndexValue d (T.mulS (S.mulS U y' z h') x (Sum.inl ⟨y, hy⟩) h).color :=
|
||||
indexValueIso d (mulSAssocIso x hy z).symm (mulS_assoc_color hy h h')
|
||||
|
||||
/-- Multiplication of indices is associative, up to a `mapIso` equivalence. -/
|
||||
lemma mulS_assoc (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y) (U : RealLorentzTensor d Z)
|
||||
(x : X) (y y' : Y) (hy : y ≠ y') (z : Z) (h : T.color x = τ (S.color y))
|
||||
(h' : S.color y' = τ (U.color z)) : mulS (mulS T S x y h) U (Sum.inr ⟨y', hy.symm⟩) z h' =
|
||||
mapIso d (mulSAssocIso x hy z) (mulS T (mulS S U y' z h') x (Sum.inl ⟨y, hy⟩) h) := by
|
||||
apply ext (mulS_assoc_color _ _ _) ?_
|
||||
funext i
|
||||
trans ∑ a, (∑ b, T.coord (mulSFstArg (mulSFstArg i a) b) *
|
||||
S.coord (mulSSndArg (mulSFstArg i a) b h)) * U.coord (mulSSndArg i a h')
|
||||
rfl
|
||||
trans ∑ a, T.coord (mulSFstArg (mulSAssocIndexValue hy h h' i) a) *
|
||||
(∑ b, S.coord (mulSFstArg (mulSSndArg (mulSAssocIndexValue hy h h' i) a h) b) *
|
||||
U.coord (mulSSndArg (mulSSndArg (mulSAssocIndexValue hy h h' i) a h) b h'))
|
||||
swap
|
||||
rw [mapIso_apply_coord, mulS_coord_arg, indexValueIso_symm]
|
||||
rfl
|
||||
rw [Finset.sum_congr rfl (fun x _ => Finset.sum_mul _ _ _)]
|
||||
rw [Finset.sum_congr rfl (fun x _ => Finset.mul_sum _ _ _)]
|
||||
rw [Finset.sum_comm]
|
||||
refine Finset.sum_congr rfl (fun a _ => Finset.sum_congr rfl (fun b _ => ?_))
|
||||
rw [mul_assoc]
|
||||
refine Mathlib.Tactic.Ring.mul_congr rfl (Mathlib.Tactic.Ring.mul_congr ?_ rfl rfl) rfl
|
||||
apply congrArg
|
||||
funext c
|
||||
by_cases hcy : c = y
|
||||
· subst hcy
|
||||
rw [mulSSndArg_on_mem, mulSFstArg_on_not_mem, mulSSndArg_on_mem]
|
||||
rfl
|
||||
· by_cases hcy' : c = y'
|
||||
· subst hcy'
|
||||
rw [mulSFstArg_on_mem, mulSSndArg_on_not_mem, mulSFstArg_on_mem]
|
||||
· rw [mulSFstArg_on_not_mem, mulSSndArg_on_not_mem, mulSSndArg_on_not_mem,
|
||||
mulSFstArg_on_not_mem]
|
||||
rw [mulSAssocIndexValue, indexValueIso_eq_symm, indexValueIso_symm_apply']
|
||||
simp only [ne_eq, Function.comp_apply, Equiv.symm_symm_apply, mulS_color, Sum.elim_inr,
|
||||
colorsIndexCast, Equiv.cast_refl, Equiv.refl_symm]
|
||||
erw [Equiv.refl_apply]
|
||||
rfl
|
||||
exact hcy'
|
||||
simpa using hcy
|
||||
|
||||
end RealLorentzTensor
|
|
@ -1,195 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzTensor.Real.Constructors
|
||||
/-!
|
||||
|
||||
# Unit of multiplication of Real Lorentz Tensors
|
||||
|
||||
The definition of the unit is akin to the definition given in
|
||||
|
||||
[Raynor][raynor2021graphical]
|
||||
|
||||
for modular operads.
|
||||
|
||||
The main results of this file are:
|
||||
|
||||
- `mulUnit_right`: The multiplicative unit acts as a right unit for the multiplication of Lorentz
|
||||
tensors.
|
||||
- `mulUnit_left`: The multiplicative unit acts as a left unit for the multiplication of Lorentz
|
||||
tensors.
|
||||
- `mulUnit_lorentzAction`: The multiplicative unit is invariant under Lorentz transformations.
|
||||
|
||||
-/
|
||||
|
||||
namespace RealLorentzTensor
|
||||
|
||||
variable {d : ℕ} {X Y : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||||
(T : RealLorentzTensor d X) (c : X → Colors) (Λ Λ' : LorentzGroup d) {μ : Colors}
|
||||
|
||||
open Marked
|
||||
|
||||
/-!
|
||||
|
||||
## Unit of multiplication
|
||||
|
||||
-/
|
||||
|
||||
/-- The unit for the multiplication of Lorentz tensors. -/
|
||||
def mulUnit (d : ℕ) (μ : Colors) : Marked d (Fin 1) 1 :=
|
||||
match μ with
|
||||
| .up => mapIso d ((Equiv.emptySum Empty (Fin (1 + 1))).trans finSumFinEquiv.symm)
|
||||
(ofMatUpDown 1)
|
||||
| .down => mapIso d ((Equiv.emptySum Empty (Fin (1 + 1))).trans finSumFinEquiv.symm)
|
||||
(ofMatDownUp 1)
|
||||
|
||||
lemma mulUnit_up_coord : (mulUnit d Colors.up).coord = fun i =>
|
||||
(1 : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) (i (Sum.inl 0)) (i (Sum.inr 0)) := by
|
||||
rfl
|
||||
|
||||
lemma mulUnit_down_coord : (mulUnit d Colors.down).coord = fun i =>
|
||||
(1 : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) (i (Sum.inl 0)) (i (Sum.inr 0)) := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma mulUnit_markedColor (μ : Colors) : (mulUnit d μ).markedColor 0 = τ μ := by
|
||||
cases μ
|
||||
case up => rfl
|
||||
case down => rfl
|
||||
|
||||
lemma mulUnit_dual_markedColor (μ : Colors) : τ ((mulUnit d μ).markedColor 0) = μ := by
|
||||
cases μ
|
||||
case up => rfl
|
||||
case down => rfl
|
||||
|
||||
@[simp]
|
||||
lemma mulUnit_unmarkedColor (μ : Colors) : (mulUnit d μ).unmarkedColor 0 = μ := by
|
||||
cases μ
|
||||
case up => rfl
|
||||
case down => rfl
|
||||
|
||||
lemma mulUnit_unmarkedColor_eq_dual_marked (μ : Colors) :
|
||||
(mulUnit d μ).unmarkedColor = τ ∘ (mulUnit d μ).markedColor := by
|
||||
funext x
|
||||
fin_cases x
|
||||
simp only [Fin.zero_eta, Fin.isValue, mulUnit_unmarkedColor, Function.comp_apply,
|
||||
mulUnit_markedColor]
|
||||
exact color_eq_dual_symm rfl
|
||||
|
||||
lemma mulUnit_coord_diag (μ : Colors) (i : (mulUnit d μ).UnmarkedIndexValue) :
|
||||
(mulUnit d μ).coord (splitIndexValue.symm (i,
|
||||
indexValueDualIso d (mulUnit_unmarkedColor_eq_dual_marked μ) i)) = 1 := by
|
||||
cases μ
|
||||
case' up => rw [mulUnit_up_coord]
|
||||
case' down => rw [mulUnit_down_coord]
|
||||
all_goals
|
||||
simp only [mulUnit]
|
||||
symm
|
||||
simp_all only [Fin.isValue, Matrix.one_apply]
|
||||
split
|
||||
rfl
|
||||
next h => exact False.elim (h rfl)
|
||||
|
||||
lemma mulUnit_coord_off_diag (μ : Colors) (i: (mulUnit d μ).UnmarkedIndexValue)
|
||||
(b : (mulUnit d μ).MarkedIndexValue)
|
||||
(hb : b ≠ indexValueDualIso d (mulUnit_unmarkedColor_eq_dual_marked μ) i) :
|
||||
(mulUnit d μ).coord (splitIndexValue.symm (i, b)) = 0 := by
|
||||
match μ with
|
||||
| Colors.up =>
|
||||
rw [mulUnit_up_coord]
|
||||
simp only [mulUnit, Matrix.one_apply, Fin.isValue, ite_eq_right_iff, one_ne_zero, imp_false,
|
||||
ne_eq]
|
||||
by_contra h
|
||||
have h1 : (indexValueDualIso d (mulUnit_unmarkedColor_eq_dual_marked (Colors.up)) i) = b := by
|
||||
funext a
|
||||
fin_cases a
|
||||
exact h
|
||||
exact hb (id (Eq.symm h1))
|
||||
| Colors.down =>
|
||||
rw [mulUnit_down_coord]
|
||||
simp only [mulUnit, Matrix.one_apply, Fin.isValue, ite_eq_right_iff, one_ne_zero, imp_false,
|
||||
ne_eq]
|
||||
by_contra h
|
||||
have h1 : (indexValueDualIso d (mulUnit_unmarkedColor_eq_dual_marked (Colors.down)) i) = b := by
|
||||
funext a
|
||||
fin_cases a
|
||||
exact h
|
||||
exact hb (id (Eq.symm h1))
|
||||
|
||||
lemma mulUnit_right (μ : Colors) (T : Marked d X 1) (h : T.markedColor 0 = μ) :
|
||||
mul T (mulUnit d μ) (h.trans (mulUnit_dual_markedColor μ).symm) = T := by
|
||||
refine ext ?_ ?_
|
||||
· funext a
|
||||
match a with
|
||||
| .inl _ => rfl
|
||||
| .inr 0 =>
|
||||
simp only [Fin.isValue, mul_color, Sum.elim_inr, mulUnit_unmarkedColor]
|
||||
exact h.symm
|
||||
funext i
|
||||
rw [mul_indexValue_right]
|
||||
change ∑ j,
|
||||
T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, _)) *
|
||||
(mulUnit d μ).coord (splitIndexValue.symm ((indexValueSumEquiv i).2, j)) = _
|
||||
let y := indexValueDualIso d (mulUnit_unmarkedColor_eq_dual_marked μ) (indexValueSumEquiv i).2
|
||||
erw [Finset.sum_eq_single_of_mem y]
|
||||
rw [mulUnit_coord_diag]
|
||||
simp only [Fin.isValue, mul_one]
|
||||
apply congrArg
|
||||
funext a
|
||||
match a with
|
||||
| .inl a =>
|
||||
change (indexValueSumEquiv i).1 a = _
|
||||
rfl
|
||||
| .inr 0 =>
|
||||
change oneMarkedIndexValue
|
||||
((colorsIndexDualCast (Eq.trans h (Eq.symm (mulUnit_dual_markedColor μ)))).symm
|
||||
(oneMarkedIndexValue.symm y)) 0 = _
|
||||
rw [indexValueIso_eq_symm, indexValueIso_symm_apply']
|
||||
simp only [Fin.isValue, oneMarkedIndexValue, colorsIndexDualCast, colorsIndexCast,
|
||||
Equiv.coe_fn_symm_mk, indexValueDualIso_apply, Equiv.trans_apply, Equiv.cast_apply,
|
||||
Equiv.symm_trans_apply, Equiv.cast_symm, Equiv.symm_symm, Equiv.apply_symm_apply, cast_cast,
|
||||
Equiv.coe_fn_mk, Equiv.refl_symm, Equiv.coe_refl, Function.comp_apply, id_eq, mul_color,
|
||||
Sum.elim_inr, Equiv.refl_apply, cast_inj, y]
|
||||
rfl
|
||||
exact Finset.mem_univ y
|
||||
intro b _ hab
|
||||
rw [mul_eq_zero]
|
||||
apply Or.inr
|
||||
exact mulUnit_coord_off_diag μ (indexValueSumEquiv i).2 b hab
|
||||
|
||||
lemma mulUnit_left (μ : Colors) (T : Marked d X 1) (h : T.markedColor 0 = μ) :
|
||||
mul (mulUnit d μ) T ((mulUnit_markedColor μ).trans (congrArg τ h.symm)) =
|
||||
mapIso d (Equiv.sumComm X (Fin 1)) T := by
|
||||
rw [← mul_symm, mulUnit_right]
|
||||
exact h
|
||||
|
||||
lemma mulUnit_lorentzAction (μ : Colors) (Λ : LorentzGroup d) :
|
||||
Λ • mulUnit d μ = mulUnit d μ := by
|
||||
match μ with
|
||||
| Colors.up =>
|
||||
rw [mulUnit]
|
||||
simp only [Nat.reduceAdd]
|
||||
rw [← lorentzAction_mapIso]
|
||||
rw [lorentzAction_ofMatUpDown]
|
||||
repeat apply congrArg
|
||||
rw [mul_one]
|
||||
change (Λ * Λ⁻¹).1 = 1
|
||||
rw [mul_inv_self Λ]
|
||||
rfl
|
||||
| Colors.down =>
|
||||
rw [mulUnit]
|
||||
simp only [Nat.reduceAdd]
|
||||
rw [← lorentzAction_mapIso]
|
||||
rw [lorentzAction_ofMatDownUp]
|
||||
repeat apply congrArg
|
||||
rw [mul_one]
|
||||
change ((LorentzGroup.transpose Λ⁻¹) * LorentzGroup.transpose Λ).1 = 1
|
||||
have inv_transpose : (LorentzGroup.transpose Λ⁻¹) = (LorentzGroup.transpose Λ)⁻¹ := by
|
||||
simp [LorentzGroup.transpose]
|
||||
rw [inv_transpose]
|
||||
rw [inv_mul_self]
|
||||
rfl
|
||||
|
||||
end RealLorentzTensor
|
Loading…
Add table
Add a link
Reference in a new issue