feat: Add Pauli-matrices as tensor.

This commit is contained in:
jstoobysmith 2024-10-16 10:39:11 +00:00
parent a60ade65f0
commit 691b7e112e
13 changed files with 989 additions and 154 deletions

View file

@ -0,0 +1,139 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Mathematics.PiTensorProduct
import Mathlib.RepresentationTheory.Rep
import HepLean.Tensors.Basic
import Mathlib.Logic.Equiv.TransferInstance
import HepLean.SpaceTime.LorentzGroup.Basic
import LLMLean
/-!
## Pauli matrices
-/
namespace PauliMatrix
open Complex
open Matrix
/-- The zeroth Pauli-matrix as a `2 x 2` complex matrix. -/
def σ0 : Matrix (Fin 2) (Fin 2) := !![1, 0; 0, 1]
/-- The first Pauli-matrix as a `2 x 2` complex matrix. -/
def σ1 : Matrix (Fin 2) (Fin 2) := !![0, 1; 1, 0]
/-- The second Pauli-matrix as a `2 x 2` complex matrix. -/
def σ2 : Matrix (Fin 2) (Fin 2) := !![0, -I; I, 0]
/-- The third Pauli-matrix as a `2 x 2` complex matrix. -/
def σ3 : Matrix (Fin 2) (Fin 2) := !![1, 0; 0, -1]
@[simp]
lemma σ0_selfAdjoint : σ0ᴴ = σ0 := by
rw [eta_fin_two σ0ᴴ]
simp [σ0]
@[simp]
lemma σ1_selfAdjoint : σ1ᴴ = σ1 := by
rw [eta_fin_two σ1ᴴ]
simp [σ1]
@[simp]
lemma σ2_selfAdjoint : σ2ᴴ = σ2 := by
rw [eta_fin_two σ2ᴴ]
simp [σ2]
@[simp]
lemma σ3_selfAdjoint : σ3ᴴ = σ3 := by
rw [eta_fin_two σ3ᴴ]
simp [σ3]
/-!
## Traces
-/
@[simp]
lemma σ0_σ0_trace : Matrix.trace (σ0 * σ0) = 2 := by
simp only [σ0, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul, Equiv.symm_apply_apply,
trace_fin_two_of]
norm_num
@[simp]
lemma σ0_σ1_trace : Matrix.trace (σ0 * σ1) = 0 := by
simp [σ0, σ1]
@[simp]
lemma σ0_σ2_trace : Matrix.trace (σ0 * σ2) = 0 := by
simp [σ0, σ2]
@[simp]
lemma σ0_σ3_trace : Matrix.trace (σ0 * σ3) = 0 := by
simp [σ0, σ3]
@[simp]
lemma σ1_σ0_trace : Matrix.trace (σ1 * σ0) = 0 := by
simp [σ1, σ0]
@[simp]
lemma σ1_σ1_trace : Matrix.trace (σ1 * σ1) = 2 := by
simp only [σ1, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul, Equiv.symm_apply_apply,
trace_fin_two_of]
norm_num
@[simp]
lemma σ1_σ2_trace : Matrix.trace (σ1 * σ2) = 0 := by
simp [σ1, σ2]
@[simp]
lemma σ1_σ3_trace : Matrix.trace (σ1 * σ3) = 0 := by
simp [σ1, σ3]
@[simp]
lemma σ2_σ0_trace : Matrix.trace (σ2 * σ0) = 0 := by
simp [σ2, σ0]
@[simp]
lemma σ2_σ1_trace : Matrix.trace (σ2 * σ1) = 0 := by
simp [σ2, σ1]
@[simp]
lemma σ2_σ2_trace : Matrix.trace (σ2 * σ2) = 2 := by
simp only [σ2, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul, Equiv.symm_apply_apply,
trace_fin_two_of]
norm_num
@[simp]
lemma σ2_σ3_trace : Matrix.trace (σ2 * σ3) = 0 := by
simp [σ2, σ3]
@[simp]
lemma σ3_σ0_trace : Matrix.trace (σ3 * σ0) = 0 := by
simp [σ3, σ0]
@[simp]
lemma σ3_σ1_trace : Matrix.trace (σ3 * σ1) = 0 := by
simp [σ3, σ1]
@[simp]
lemma σ3_σ2_trace : Matrix.trace (σ3 * σ2) = 0 := by
simp [σ3, σ2]
@[simp]
lemma σ3_σ3_trace : Matrix.trace (σ3 * σ3) = 2 := by
simp only [σ3, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul,
tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul, Equiv.symm_apply_apply,
trace_fin_two_of]
norm_num
end PauliMatrix