refactor: Lint

This commit is contained in:
jstoobysmith 2024-10-25 15:12:39 +00:00
parent 7ea91f459c
commit 69a22eda65
4 changed files with 9 additions and 4 deletions

View file

@ -177,6 +177,8 @@ lemma basis_contr_pauliMatrix_basis_tree_expand' {n : } {c : Fin n → comple
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rfl
/-- The map to color which appears when contracting a basis vector with
puali matrices. -/
def pauliMatrixBasisProdMap
{n : } {c : Fin n → complexLorentzTensor.C}
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) :
@ -186,6 +188,8 @@ def pauliMatrixBasisProdMap
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
(finSumFinEquiv.symm i))
/-- The new basis vectors which appear when contracting pauli matrices with
basis vectors. -/
def basisVectorContrPauli {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))

View file

@ -25,7 +25,7 @@ noncomputable section
namespace complexLorentzTensor
open Lorentz
/-- A bispinor `pᵃᵃ` created from a lorentz vector `p^μ`. -/
/-- A bispinor `pᵃᵃ` created from a lorentz vector `p^μ`. -/
def contrBispinorUp (p : complexContr) :=
{p | μ ⊗ pauliCo | μ α β}ᵀ.tensor
@ -33,7 +33,7 @@ lemma tensorNode_contrBispinorUp (p : complexContr) :
(tensorNode (contrBispinorUp p)).tensor = {p | μ ⊗ pauliCo | μ α β}ᵀ.tensor := by
rw [contrBispinorUp, tensorNode_tensor]
/-- A bispinor `pₐₐ` created from a lorentz vector `p^μ`. -/
/-- A bispinor `pₐₐ` created from a lorentz vector `p^μ`. -/
def contrBispinorDown (p : complexContr) :=
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
(contrBispinorUp p) | α β}ᵀ.tensor

View file

@ -506,7 +506,7 @@ lemma pauliCo_contr_pauliContr_expand :
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by
rw [pauliMatrix_contract_pauliMatrix_aux]
rw [pauliCo_contr_pauliContr_expand_aux]
simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul,
one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul,
neg_mul, _root_.neg_neg]
@ -519,7 +519,7 @@ lemma pauliCo_contr_pauliContr_expand :
theorem pauliCo_contr_pauliContr :
{pauliCo | ν α β ⊗ PauliMatrix.asConsTensor | ν α' β' =
2 •ₜ Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ := by
rw [pauliMatrix_contract_pauliMatrix_expand]
rw [pauliCo_contr_pauliContr_expand]
rw [perm_tensor_eq <| smul_tensor_eq <| leftMetric_mul_rightMetric_tree]
rw [perm_smul]
/- Moving perm through adds. -/

View file

@ -25,6 +25,7 @@ noncomputable section
namespace Fermion
open complexLorentzTensor
/-- The pauli matrices as `σ_μ^α^{dot β}`. -/
def pauliCo := {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
lemma tensorNode_pauliCo : (tensorNode pauliCo).tensor =