refactor: Lint
This commit is contained in:
parent
7ea91f459c
commit
69a22eda65
4 changed files with 9 additions and 4 deletions
|
@ -177,6 +177,8 @@ lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → comple
|
||||||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
|
/-- The map to color which appears when contracting a basis vector with
|
||||||
|
puali matrices. -/
|
||||||
def pauliMatrixBasisProdMap
|
def pauliMatrixBasisProdMap
|
||||||
{n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
{n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) :
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) :
|
||||||
|
@ -186,6 +188,8 @@ def pauliMatrixBasisProdMap
|
||||||
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
|
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3))
|
||||||
(finSumFinEquiv.symm i))
|
(finSumFinEquiv.symm i))
|
||||||
|
|
||||||
|
/-- The new basis vectors which appear when contracting pauli matrices with
|
||||||
|
basis vectors. -/
|
||||||
def basisVectorContrPauli {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
def basisVectorContrPauli {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
||||||
|
|
|
@ -25,7 +25,7 @@ noncomputable section
|
||||||
namespace complexLorentzTensor
|
namespace complexLorentzTensor
|
||||||
open Lorentz
|
open Lorentz
|
||||||
|
|
||||||
/-- A bispinor `pᵃᵃ` created from a lorentz vector `p^μ`. -/
|
/-- A bispinor `pᵃᵃ` created from a lorentz vector `p^μ`. -/
|
||||||
def contrBispinorUp (p : complexContr) :=
|
def contrBispinorUp (p : complexContr) :=
|
||||||
{p | μ ⊗ pauliCo | μ α β}ᵀ.tensor
|
{p | μ ⊗ pauliCo | μ α β}ᵀ.tensor
|
||||||
|
|
||||||
|
@ -33,7 +33,7 @@ lemma tensorNode_contrBispinorUp (p : complexContr) :
|
||||||
(tensorNode (contrBispinorUp p)).tensor = {p | μ ⊗ pauliCo | μ α β}ᵀ.tensor := by
|
(tensorNode (contrBispinorUp p)).tensor = {p | μ ⊗ pauliCo | μ α β}ᵀ.tensor := by
|
||||||
rw [contrBispinorUp, tensorNode_tensor]
|
rw [contrBispinorUp, tensorNode_tensor]
|
||||||
|
|
||||||
/-- A bispinor `pₐₐ` created from a lorentz vector `p^μ`. -/
|
/-- A bispinor `pₐₐ` created from a lorentz vector `p^μ`. -/
|
||||||
def contrBispinorDown (p : complexContr) :=
|
def contrBispinorDown (p : complexContr) :=
|
||||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||||
(contrBispinorUp p) | α β}ᵀ.tensor
|
(contrBispinorUp p) | α β}ᵀ.tensor
|
||||||
|
|
|
@ -506,7 +506,7 @@ lemma pauliCo_contr_pauliContr_expand :
|
||||||
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||||||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||||||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by
|
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by
|
||||||
rw [pauliMatrix_contract_pauliMatrix_aux]
|
rw [pauliCo_contr_pauliContr_expand_aux]
|
||||||
simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul,
|
simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul,
|
||||||
one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul,
|
one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul,
|
||||||
neg_mul, _root_.neg_neg]
|
neg_mul, _root_.neg_neg]
|
||||||
|
@ -519,7 +519,7 @@ lemma pauliCo_contr_pauliContr_expand :
|
||||||
theorem pauliCo_contr_pauliContr :
|
theorem pauliCo_contr_pauliContr :
|
||||||
{pauliCo | ν α β ⊗ PauliMatrix.asConsTensor | ν α' β' =
|
{pauliCo | ν α β ⊗ PauliMatrix.asConsTensor | ν α' β' =
|
||||||
2 •ₜ Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ := by
|
2 •ₜ Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ := by
|
||||||
rw [pauliMatrix_contract_pauliMatrix_expand]
|
rw [pauliCo_contr_pauliContr_expand]
|
||||||
rw [perm_tensor_eq <| smul_tensor_eq <| leftMetric_mul_rightMetric_tree]
|
rw [perm_tensor_eq <| smul_tensor_eq <| leftMetric_mul_rightMetric_tree]
|
||||||
rw [perm_smul]
|
rw [perm_smul]
|
||||||
/- Moving perm through adds. -/
|
/- Moving perm through adds. -/
|
||||||
|
|
|
@ -25,6 +25,7 @@ noncomputable section
|
||||||
namespace Fermion
|
namespace Fermion
|
||||||
open complexLorentzTensor
|
open complexLorentzTensor
|
||||||
|
|
||||||
|
/-- The pauli matrices as `σ_μ^α^{dot β}`. -/
|
||||||
def pauliCo := {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
def pauliCo := {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
||||||
|
|
||||||
lemma tensorNode_pauliCo : (tensorNode pauliCo).tensor =
|
lemma tensorNode_pauliCo : (tensorNode pauliCo).tensor =
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue