refactor: Lint style

This commit is contained in:
kuotsanhsu 2025-01-11 20:09:29 +08:00
parent 1053ccaa3a
commit 6a3bb431bf
4 changed files with 73 additions and 29 deletions

View file

@ -35,17 +35,24 @@ theorem finAddEquivSigmaCond_false (h : ¬ i < m) : finAddEquivSigmaCond i = ⟨
end Equiv
/-- The type family parameterized by `Bool` is finite if each type variant is finite. -/
instance [M : Fintype m] [N : Fintype n] (b : Bool) : Fintype (cond b m n) := b.rec N M
/-- The type family parameterized by `Bool` has decidable equality if each type variant is
decidable. -/
instance [DecidableEq m] [DecidableEq n] : DecidableEq (Σ b, cond b m n)
| ⟨true, _⟩, ⟨false, _⟩
| ⟨false, _⟩, ⟨true, _⟩ => isFalse nofun
| ⟨false, i⟩, ⟨false, j⟩
| ⟨true, i⟩, ⟨true, j⟩ => if h : i = j then isTrue (Sigma.eq rfl h) else isFalse fun | rfl => h rfl
| ⟨true, i⟩, ⟨true, j⟩ =>
if h : i = j then isTrue (Sigma.eq rfl h) else isFalse fun | rfl => h rfl
namespace Matrix
/-- The property of a matrix being upper triangular. See also `Matrix.det_of_upperTriangular`. -/
abbrev IsUpperTriangular [LT n] [CommRing R] (A : Matrix n n R) := A.BlockTriangular id
/-- The subtype of upper triangular matrices. -/
abbrev UpperTriangular (n R) [LT n] [CommRing R] := { A : Matrix n n R // A.IsUpperTriangular }
end Matrix
@ -68,15 +75,22 @@ theorem toMatrixOrthonormal_apply_apply (b : OrthonormalBasis n 𝕜 E) (f : Mod
theorem toMatrixOrthonormal_reindex [Fintype m] [DecidableEq m]
(b : OrthonormalBasis m 𝕜 E) (e : m ≃ n) (f : Module.End 𝕜 E)
: toMatrixOrthonormal (b.reindex e) f = Matrix.reindex e e (toMatrixOrthonormal b f) :=
Matrix.ext fun i j => let c := b.toBasis
show toMatrix (b.reindex e).toBasis (b.reindex e).toBasis f i j = toMatrix c c f (e.symm i) (e.symm j) by
rw [b.reindex_toBasis, f.toMatrix_apply, c.repr_reindex_apply, c.reindex_apply, f.toMatrix_apply]
Matrix.ext fun i j =>
calc toMatrixOrthonormal (b.reindex e) f i j
_ = (b.reindex e).repr (f (b.reindex e j)) i := f.toMatrix_apply ..
_ = b.repr (f (b (e.symm j))) (e.symm i) := by simp
_ = toMatrixOrthonormal b f (e.symm i) (e.symm j) := Eq.symm <| f.toMatrix_apply ..
end
/-- **Don't use this definition directly.** Instead, use `Matrix.schurTriangulationBasis`,
`Matrix.schurTriangulationUnitary`, and `Matrix.schurTriangulation`. See also
`LinearMap.SchurTriangulationAux.of` and `Matrix.schurTriangulationAux`. -/
structure SchurTriangulationAux (f : Module.End 𝕜 E) where
/-- The dimension of the inner product space `E`. -/
dim :
hdim : Module.finrank 𝕜 E = dim
/-- An orthonormal basis of `E` that induces an upper triangular form for `f`. -/
basis : OrthonormalBasis (Fin dim) 𝕜 E
upperTriangular : (toMatrix basis.toBasis basis.toBasis f).IsUpperTriangular
@ -84,6 +98,8 @@ end
variable [IsAlgClosed 𝕜]
/-- **Don't use this definition directly.** This is the key algorithm behind
`Matrix.schur_triangulation`. -/
protected noncomputable def SchurTriangulationAux.of
[NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (f : Module.End 𝕜 E)
: SchurTriangulationAux f :=
@ -103,7 +119,8 @@ protected noncomputable def SchurTriangulationAux.of
suffices ⨆ b, cond b V W = from (hV.decomposition this).isInternal _
(sup_eq_iSup V W).symm.trans Submodule.sup_orthogonal_of_completeSpace
let B (b : Bool) : OrthonormalBasis (cond b (Fin m) (Fin n)) 𝕜 ↥(cond b V W) := b.rec bW bV
let bE : OrthonormalBasis (Σ b, cond b (Fin m) (Fin n)) 𝕜 E := int.collectedOrthonormalBasis hV B
let bE : OrthonormalBasis (Σ b, cond b (Fin m) (Fin n)) 𝕜 E :=
int.collectedOrthonormalBasis hV B
let e := Equiv.finAddEquivSigmaCond
let basis := bE.reindex e.symm
{
@ -113,11 +130,13 @@ protected noncomputable def SchurTriangulationAux.of
upperTriangular := fun i j (hji : j < i) => show toMatrixOrthonormal basis f i j = 0 from
have hB : ∀ s, bE s = B s.1 s.2
| ⟨true, i⟩ => show bE ⟨true, i⟩ = bV i from
show (int.collectedBasis fun b => (B b).toBasis).toOrthonormalBasis _ ⟨true, i⟩ = bV i by simp
show (int.collectedBasis fun b => (B b).toBasis).toOrthonormalBasis _ ⟨true, i⟩ = bV i
by simp
| ⟨false, j⟩ => show bE ⟨false, j⟩ = bW j from
show (int.collectedBasis fun b => (B b).toBasis).toOrthonormalBasis _ ⟨false, j⟩ = bW j by simp
show (int.collectedBasis fun b => (B b).toBasis).toOrthonormalBasis _ ⟨false, j⟩ = bW j
by simp
have hf {bi i' bj j'} (hi : e i = ⟨bi, i'⟩) (hj : e j = ⟨bj, j'⟩) :=
calc toMatrixOrthonormal basis f i j
calc toMatrixOrthonormal basis f i j
_ = toMatrixOrthonormal bE f (e i) (e j) := by rw [f.toMatrixOrthonormal_reindex] ; rfl
_ = ⟪bE (e i), f (bE (e j))⟫_𝕜 := f.toMatrixOrthonormal_apply_apply ..
_ = ⟪(B bi i' : E), f (B bj j')⟫_𝕜 := by rw [hB, hB, hi, hj]
@ -125,7 +144,7 @@ protected noncomputable def SchurTriangulationAux.of
if hj : j < m then
let j' : Fin m := ⟨j, hj⟩
have hf' {bi i'} (hi : e i = ⟨bi, i'⟩) (h0 : ⟪(B bi i' : E), bV j'⟫_𝕜 = 0) :=
calc toMatrixOrthonormal basis f i j
calc toMatrixOrthonormal basis f i j
_ = ⟪(B bi i' : E), f _⟫_𝕜 := hf hi (Equiv.finAddEquivSigmaCond_true hj)
_ = ⟪_, f (bV j')⟫_𝕜 := rfl
_ = 0 :=
@ -145,7 +164,7 @@ protected noncomputable def SchurTriangulationAux.of
have hi (h : i < m) : False := hj (Nat.lt_trans hji h)
let i' : Fin n := i.subNat' hi
let j' : Fin n := j.subNat' hj
calc toMatrixOrthonormal basis f i j
calc toMatrixOrthonormal basis f i j
_ = ⟪(bW i' : E), f (bW j')⟫_𝕜 :=
hf (Equiv.finAddEquivSigmaCond_false hi) (Equiv.finAddEquivSigmaCond_false hj)
_ = ⟪bW i', g (bW j')⟫_𝕜 := by simp [g]
@ -162,8 +181,10 @@ protected noncomputable def SchurTriangulationAux.of
}
termination_by Module.finrank 𝕜 E
decreasing_by exact
calc Module.finrank 𝕜 W
_ < m + Module.finrank 𝕜 W := Nat.lt_add_of_pos_left (Submodule.one_le_finrank_iff.mpr μ.property)
calc Module.finrank 𝕜 W
_ < m + Module.finrank 𝕜 W :=
suffices 0 < m from Nat.lt_add_of_pos_left this
Submodule.one_le_finrank_iff.mpr μ.property
_ = Module.finrank 𝕜 E := hdim
end LinearMap
@ -173,7 +194,12 @@ namespace Matrix
a.k.a., `instDecidableEq_mathlib`. -/
variable [RCLike 𝕜] [IsAlgClosed 𝕜] [Fintype n] [DecidableEq n] [LinearOrder n] (A : Matrix n n 𝕜)
noncomputable def schurTriangulationAux : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) × UpperTriangular n 𝕜 :=
/-- **Don't use this definition directly.** Instead, use `Matrix.schurTriangulationBasis`,
`Matrix.schurTriangulationUnitary`, and `Matrix.schurTriangulation` for which this is their
simultaneous definition. This is `LinearMap.SchurTriangulationAux` adapted for matrices in the
Euclidean space. -/
noncomputable def schurTriangulationAux
: OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) × UpperTriangular n 𝕜 :=
let f := toEuclideanLin A
let ⟨d, hd, b, hut⟩ := LinearMap.SchurTriangulationAux.of f
let e : Fin d ≃o n := Fintype.orderIsoFinOfCardEq n (finrank_euclideanSpace.symm.trans hd)
@ -181,17 +207,24 @@ noncomputable def schurTriangulationAux : OrthonormalBasis n 𝕜 (EuclideanSpac
let B := LinearMap.toMatrixOrthonormal b' f
suffices B.IsUpperTriangular from ⟨b', B, this⟩
fun i j (hji : j < i) =>
calc LinearMap.toMatrixOrthonormal b' f i j
_ = LinearMap.toMatrixOrthonormal b f (e.symm i) (e.symm j) := by rw [f.toMatrixOrthonormal_reindex] ; rfl
calc LinearMap.toMatrixOrthonormal b' f i j
_ = LinearMap.toMatrixOrthonormal b f (e.symm i) (e.symm j) :=
by rw [f.toMatrixOrthonormal_reindex] ; rfl
_ = 0 := hut (e.symm.lt_iff_lt.mpr hji)
/-- The change of basis that induces the upper triangular form `A.schurTriangulation` of a matrix
`A` over an algebraically closed field. -/
noncomputable def schurTriangulationBasis : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) :=
A.schurTriangulationAux.1
/-- The unitary matrix that induces the upper triangular form `A.schurTriangulation` to which a
matrix `A` over an algebraically closed field is unitarily similar. -/
noncomputable def schurTriangulationUnitary : unitaryGroup n 𝕜 where
val := (EuclideanSpace.basisFun n 𝕜).toBasis.toMatrix A.schurTriangulationBasis
property := OrthonormalBasis.toMatrix_orthonormalBasis_mem_unitary ..
/-- The upper triangular form induced by `A.schurTriangulationUnitary` to which a matrix `A` over an
algebraically closed field is unitarily similar. -/
noncomputable def schurTriangulation : UpperTriangular n 𝕜 :=
A.schurTriangulationAux.2
@ -204,11 +237,11 @@ theorem schur_triangulation
have h : U * A.schurTriangulation.val = A * U :=
let b := A.schurTriangulationBasis.toBasis
let c := (EuclideanSpace.basisFun n 𝕜).toBasis
calc c.toMatrix b * LinearMap.toMatrix b b (toEuclideanLin A)
calc c.toMatrix b * LinearMap.toMatrix b b (toEuclideanLin A)
_ = LinearMap.toMatrix c c (toEuclideanLin A) * c.toMatrix b := by simp
_ = LinearMap.toMatrix c c (toLin c c A) * U := rfl
_ = A * U := by simp
calc A
calc A
_ = A * U * star U := by simp [mul_assoc]
_ = U * A.schurTriangulation * star U := by rw [←h]