feat: Add alternative prod_assoc lemma
This commit is contained in:
parent
2894cfd0f8
commit
6bca8c295c
2 changed files with 15 additions and 0 deletions
|
@ -107,6 +107,14 @@ lemma perm_eq_id {n : ℕ} {c : Fin n → S.C} (σ : (OverColor.mk c) ⟶ (OverC
|
|||
(h : σ = 𝟙 _) (t : TensorTree S c) : (perm σ t).tensor = t.tensor := by
|
||||
simp [perm_tensor, h]
|
||||
|
||||
lemma perm_eq_of_eq_perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||
(σ : (OverColor.mk c) ≅ (OverColor.mk c1))
|
||||
{t : TensorTree S c} {t2 : TensorTree S c1} (h : (perm σ.hom t).tensor = t2.tensor) :
|
||||
t.tensor = (perm σ.inv t2).tensor := by
|
||||
rw [perm_tensor, ← h]
|
||||
change _ = (S.F.map σ.hom ≫ S.F.map σ.inv).hom _
|
||||
simp only [Iso.map_hom_inv_id, Action.id_hom, ModuleCat.id_apply]
|
||||
|
||||
/-!
|
||||
|
||||
## Additive identities
|
||||
|
|
|
@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||||
/-!
|
||||
|
||||
# Associativity of products
|
||||
|
@ -104,4 +105,10 @@ theorem prod_assoc (t : TensorTree S c) (t2 : TensorTree S c2) (t3 : TensorTree
|
|||
ModuleCat.coe_comp, Function.comp_apply]
|
||||
rfl
|
||||
|
||||
/-- The alternative version of associativity for `prod` where the permutation is on the opposite
|
||||
side. -/
|
||||
lemma prod_assoc' (t : TensorTree S c) (t2 : TensorTree S c2) (t3 : TensorTree S c3) :
|
||||
(prod (prod t t2) t3).tensor = (perm (assocPerm c c2 c3).inv (prod t (prod t2 t3))).tensor :=
|
||||
perm_eq_of_eq_perm _ (prod_assoc c c2 c3 t t2 t3).symm
|
||||
|
||||
end TensorTree
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue