refactor: Change namespace of SL2C

This commit is contained in:
jstoobysmith 2024-11-10 06:48:04 +00:00
parent d058f41689
commit 6c17a61989
12 changed files with 11 additions and 22 deletions

View file

@ -18,7 +18,6 @@ We define
-/
namespace SpaceTime
open Matrix
open TensorProduct
@ -84,5 +83,3 @@ lemma space_comps (Λ : lorentzAlgebra) (i j : Fin 3) :
(congrArg (fun M ↦ M (Sum.inr i) (Sum.inr j)) $ mem_iff.mp Λ.2).symm
end lorentzAlgebra
end SpaceTime

View file

@ -24,7 +24,6 @@ open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
namespace Lorentz

View file

@ -16,7 +16,6 @@ open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
open CategoryTheory.MonoidalCategory
namespace Lorentz

View file

@ -18,7 +18,6 @@ open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
open CategoryTheory.MonoidalCategory
namespace Lorentz

View file

@ -92,7 +92,7 @@ def lorentzGroupRep : Representation (LorentzGroup 3) ContrModule where
/-- The representation of the SL(2, ) on `ContrModule` induced by the representation of the
Lorentz group. -/
def SL2CRep : Representation SL(2, ) ContrModule :=
MonoidHom.comp lorentzGroupRep SpaceTime.SL2C.toLorentzGroup
MonoidHom.comp lorentzGroupRep Lorentz.SL2C.toLorentzGroup
end ContrModule
@ -156,7 +156,7 @@ def lorentzGroupRep : Representation (LorentzGroup 3) CoModule where
/-- The representation of the SL(2, ) on `ContrModule` induced by the representation of the
Lorentz group. -/
def SL2CRep : Representation SL(2, ) CoModule :=
MonoidHom.comp lorentzGroupRep SpaceTime.SL2C.toLorentzGroup
MonoidHom.comp lorentzGroupRep Lorentz.SL2C.toLorentzGroup
end CoModule

View file

@ -16,7 +16,6 @@ open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
open CategoryTheory.MonoidalCategory
namespace Lorentz

View file

@ -16,7 +16,6 @@ open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
open CategoryTheory.MonoidalCategory
namespace Lorentz

View file

@ -28,7 +28,6 @@ open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
/-- The tensor `σ^μ^a^{dot a}` based on the Pauli-matrices as an element of
`complexContr ⊗ leftHanded ⊗ rightHanded`. -/

View file

@ -15,7 +15,7 @@ import HepLean.Meta.Informal
The aim of this file is to give the relationship between `SL(2, )` and the Lorentz group.
-/
namespace SpaceTime
namespace Lorentz
open Matrix
open MatrixGroups
@ -23,8 +23,6 @@ open Complex
namespace SL2C
open SpaceTime
noncomputable section
/-!
@ -189,4 +187,4 @@ informal_lemma toRestrictedLorentzGroup where
end
end SL2C
end SpaceTime
end Lorentz

View file

@ -207,7 +207,7 @@ def leftHandedToAlt : leftHanded ⟶ altLeftHanded where
change AltLeftHandedModule.toFin2Equiv.symm (!![0, 1; -1, 0] *ᵥ M.1 *ᵥ ψ.val) =
AltLeftHandedModule.toFin2Equiv.symm ((M.1⁻¹)ᵀ *ᵥ !![0, 1; -1, 0] *ᵥ ψ.val)
apply congrArg
rw [mulVec_mulVec, mulVec_mulVec, SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
rw [mulVec_mulVec, mulVec_mulVec, Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
refine congrFun (congrArg _ ?_) _
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ]
@ -238,7 +238,7 @@ def leftHandedAltTo : altLeftHanded ⟶ leftHanded where
refine LinearMap.ext (fun ψ => ?_)
change LeftHandedModule.toFin2Equiv.symm (!![0, -1; 1, 0] *ᵥ (M.1⁻¹)ᵀ *ᵥ ψ.val) =
LeftHandedModule.toFin2Equiv.symm (M.1 *ᵥ !![0, -1; 1, 0] *ᵥ ψ.val)
rw [EquivLike.apply_eq_iff_eq, mulVec_mulVec, mulVec_mulVec, SpaceTime.SL2C.inverse_coe,
rw [EquivLike.apply_eq_iff_eq, mulVec_mulVec, mulVec_mulVec, Lorentz.SL2C.inverse_coe,
eta_fin_two M.1]
refine congrFun (congrArg _ ?_) _
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,

View file

@ -32,7 +32,7 @@ def metricRaw : Matrix (Fin 2) (Fin 2) := !![0, 1; -1, 0]
lemma comm_metricRaw (M : SL(2,)) : M.1 * metricRaw = metricRaw * (M.1⁻¹)ᵀ := by
rw [metricRaw]
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
rw [Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ]
simp only [Fin.isValue, mul_zero, mul_neg, mul_one, zero_add, add_zero, transpose_apply, of_apply,
@ -42,7 +42,7 @@ lemma comm_metricRaw (M : SL(2,)) : M.1 * metricRaw = metricRaw * (M.1⁻¹)
lemma metricRaw_comm (M : SL(2,)) : metricRaw * M.1 = (M.1⁻¹)ᵀ * metricRaw := by
rw [metricRaw]
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
rw [Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ]
simp only [Fin.isValue, zero_mul, one_mul, zero_add, neg_mul, add_zero, transpose_apply, of_apply,
@ -53,7 +53,7 @@ lemma metricRaw_comm (M : SL(2,)) : metricRaw * M.1 = (M.1⁻¹)ᵀ * metricR
lemma star_comm_metricRaw (M : SL(2,)) : M.1.map star * metricRaw = metricRaw * ((M.1)⁻¹)ᴴ := by
rw [metricRaw]
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
rw [Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᴴ]
rw [eta_fin_two (!![M.1 0 0, M.1 0 1; M.1 1 0, M.1 1 1].map star)]
@ -61,7 +61,7 @@ lemma star_comm_metricRaw (M : SL(2,)) : M.1.map star * metricRaw = metricRaw
lemma metricRaw_comm_star (M : SL(2,)) : metricRaw * M.1.map star = ((M.1)⁻¹)ᴴ * metricRaw := by
rw [metricRaw]
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
rw [Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᴴ]
rw [eta_fin_two (!![M.1 0 0, M.1 0 1; M.1 1 0, M.1 1 1].map star)]

View file

@ -713,7 +713,7 @@ lemma leftRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ) (M : SL(2,))
rw [← h1]
simp
open SpaceTime
open Lorentz
lemma altLeftAltRightToMatrix_ρ_symm_selfAdjoint (v : Matrix (Fin 2) (Fin 2) )
(hv : IsSelfAdjoint v) (M : SL(2,)) :