refactor: Change namespace of SL2C
This commit is contained in:
parent
d058f41689
commit
6c17a61989
12 changed files with 11 additions and 22 deletions
|
@ -18,7 +18,6 @@ We define
|
|||
|
||||
-/
|
||||
|
||||
namespace SpaceTime
|
||||
open Matrix
|
||||
open TensorProduct
|
||||
|
||||
|
@ -84,5 +83,3 @@ lemma space_comps (Λ : lorentzAlgebra) (i j : Fin 3) :
|
|||
(congrArg (fun M ↦ M (Sum.inr i) (Sum.inr j)) $ mem_iff.mp Λ.2).symm
|
||||
|
||||
end lorentzAlgebra
|
||||
|
||||
end SpaceTime
|
||||
|
|
|
@ -24,7 +24,6 @@ open Matrix
|
|||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open SpaceTime
|
||||
|
||||
namespace Lorentz
|
||||
|
||||
|
|
|
@ -16,7 +16,6 @@ open Matrix
|
|||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open SpaceTime
|
||||
open CategoryTheory.MonoidalCategory
|
||||
namespace Lorentz
|
||||
|
||||
|
|
|
@ -18,7 +18,6 @@ open Matrix
|
|||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open SpaceTime
|
||||
open CategoryTheory.MonoidalCategory
|
||||
namespace Lorentz
|
||||
|
||||
|
|
|
@ -92,7 +92,7 @@ def lorentzGroupRep : Representation ℂ (LorentzGroup 3) ContrℂModule where
|
|||
/-- The representation of the SL(2, ℂ) on `ContrℂModule` induced by the representation of the
|
||||
Lorentz group. -/
|
||||
def SL2CRep : Representation ℂ SL(2, ℂ) ContrℂModule :=
|
||||
MonoidHom.comp lorentzGroupRep SpaceTime.SL2C.toLorentzGroup
|
||||
MonoidHom.comp lorentzGroupRep Lorentz.SL2C.toLorentzGroup
|
||||
|
||||
end ContrℂModule
|
||||
|
||||
|
@ -156,7 +156,7 @@ def lorentzGroupRep : Representation ℂ (LorentzGroup 3) CoℂModule where
|
|||
/-- The representation of the SL(2, ℂ) on `ContrℂModule` induced by the representation of the
|
||||
Lorentz group. -/
|
||||
def SL2CRep : Representation ℂ SL(2, ℂ) CoℂModule :=
|
||||
MonoidHom.comp lorentzGroupRep SpaceTime.SL2C.toLorentzGroup
|
||||
MonoidHom.comp lorentzGroupRep Lorentz.SL2C.toLorentzGroup
|
||||
|
||||
end CoℂModule
|
||||
|
||||
|
|
|
@ -16,7 +16,6 @@ open Matrix
|
|||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open SpaceTime
|
||||
open CategoryTheory.MonoidalCategory
|
||||
namespace Lorentz
|
||||
|
||||
|
|
|
@ -16,7 +16,6 @@ open Matrix
|
|||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open SpaceTime
|
||||
open CategoryTheory.MonoidalCategory
|
||||
namespace Lorentz
|
||||
|
||||
|
|
|
@ -28,7 +28,6 @@ open Matrix
|
|||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open SpaceTime
|
||||
|
||||
/-- The tensor `σ^μ^a^{dot a}` based on the Pauli-matrices as an element of
|
||||
`complexContr ⊗ leftHanded ⊗ rightHanded`. -/
|
||||
|
|
|
@ -15,7 +15,7 @@ import HepLean.Meta.Informal
|
|||
The aim of this file is to give the relationship between `SL(2, ℂ)` and the Lorentz group.
|
||||
|
||||
-/
|
||||
namespace SpaceTime
|
||||
namespace Lorentz
|
||||
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
|
@ -23,8 +23,6 @@ open Complex
|
|||
|
||||
namespace SL2C
|
||||
|
||||
open SpaceTime
|
||||
|
||||
noncomputable section
|
||||
|
||||
/-!
|
||||
|
@ -189,4 +187,4 @@ informal_lemma toRestrictedLorentzGroup where
|
|||
end
|
||||
end SL2C
|
||||
|
||||
end SpaceTime
|
||||
end Lorentz
|
||||
|
|
|
@ -207,7 +207,7 @@ def leftHandedToAlt : leftHanded ⟶ altLeftHanded where
|
|||
change AltLeftHandedModule.toFin2ℂEquiv.symm (!![0, 1; -1, 0] *ᵥ M.1 *ᵥ ψ.val) =
|
||||
AltLeftHandedModule.toFin2ℂEquiv.symm ((M.1⁻¹)ᵀ *ᵥ !![0, 1; -1, 0] *ᵥ ψ.val)
|
||||
apply congrArg
|
||||
rw [mulVec_mulVec, mulVec_mulVec, SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
rw [mulVec_mulVec, mulVec_mulVec, Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
refine congrFun (congrArg _ ?_) _
|
||||
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
|
||||
Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ]
|
||||
|
@ -238,7 +238,7 @@ def leftHandedAltTo : altLeftHanded ⟶ leftHanded where
|
|||
refine LinearMap.ext (fun ψ => ?_)
|
||||
change LeftHandedModule.toFin2ℂEquiv.symm (!![0, -1; 1, 0] *ᵥ (M.1⁻¹)ᵀ *ᵥ ψ.val) =
|
||||
LeftHandedModule.toFin2ℂEquiv.symm (M.1 *ᵥ !![0, -1; 1, 0] *ᵥ ψ.val)
|
||||
rw [EquivLike.apply_eq_iff_eq, mulVec_mulVec, mulVec_mulVec, SpaceTime.SL2C.inverse_coe,
|
||||
rw [EquivLike.apply_eq_iff_eq, mulVec_mulVec, mulVec_mulVec, Lorentz.SL2C.inverse_coe,
|
||||
eta_fin_two M.1]
|
||||
refine congrFun (congrArg _ ?_) _
|
||||
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
|
||||
|
|
|
@ -32,7 +32,7 @@ def metricRaw : Matrix (Fin 2) (Fin 2) ℂ := !![0, 1; -1, 0]
|
|||
|
||||
lemma comm_metricRaw (M : SL(2,ℂ)) : M.1 * metricRaw = metricRaw * (M.1⁻¹)ᵀ := by
|
||||
rw [metricRaw]
|
||||
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
rw [Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
|
||||
Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ]
|
||||
simp only [Fin.isValue, mul_zero, mul_neg, mul_one, zero_add, add_zero, transpose_apply, of_apply,
|
||||
|
@ -42,7 +42,7 @@ lemma comm_metricRaw (M : SL(2,ℂ)) : M.1 * metricRaw = metricRaw * (M.1⁻¹)
|
|||
|
||||
lemma metricRaw_comm (M : SL(2,ℂ)) : metricRaw * M.1 = (M.1⁻¹)ᵀ * metricRaw := by
|
||||
rw [metricRaw]
|
||||
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
rw [Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
|
||||
Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ]
|
||||
simp only [Fin.isValue, zero_mul, one_mul, zero_add, neg_mul, add_zero, transpose_apply, of_apply,
|
||||
|
@ -53,7 +53,7 @@ lemma metricRaw_comm (M : SL(2,ℂ)) : metricRaw * M.1 = (M.1⁻¹)ᵀ * metricR
|
|||
|
||||
lemma star_comm_metricRaw (M : SL(2,ℂ)) : M.1.map star * metricRaw = metricRaw * ((M.1)⁻¹)ᴴ := by
|
||||
rw [metricRaw]
|
||||
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
rw [Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
|
||||
eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᴴ]
|
||||
rw [eta_fin_two (!![M.1 0 0, M.1 0 1; M.1 1 0, M.1 1 1].map star)]
|
||||
|
@ -61,7 +61,7 @@ lemma star_comm_metricRaw (M : SL(2,ℂ)) : M.1.map star * metricRaw = metricRaw
|
|||
|
||||
lemma metricRaw_comm_star (M : SL(2,ℂ)) : metricRaw * M.1.map star = ((M.1)⁻¹)ᴴ * metricRaw := by
|
||||
rw [metricRaw]
|
||||
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
rw [Lorentz.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
|
||||
eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᴴ]
|
||||
rw [eta_fin_two (!![M.1 0 0, M.1 0 1; M.1 1 0, M.1 1 1].map star)]
|
||||
|
|
|
@ -713,7 +713,7 @@ lemma leftRightToMatrix_ρ_symm (v : Matrix (Fin 2) (Fin 2) ℂ) (M : SL(2,ℂ))
|
|||
rw [← h1]
|
||||
simp
|
||||
|
||||
open SpaceTime
|
||||
open Lorentz
|
||||
|
||||
lemma altLeftAltRightToMatrix_ρ_symm_selfAdjoint (v : Matrix (Fin 2) (Fin 2) ℂ)
|
||||
(hv : IsSelfAdjoint v) (M : SL(2,ℂ)) :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue