feat: Add example for complex lorentz

This commit is contained in:
jstoobysmith 2024-10-21 14:05:54 +00:00
parent 1354c14cc8
commit 6c359a3737
2 changed files with 46 additions and 1 deletions

View file

@ -9,6 +9,8 @@ import Mathlib.LinearAlgebra.TensorProduct.Basis
import HepLean.Tensors.Tree.NodeIdentities.Basic
import HepLean.Tensors.Tree.NodeIdentities.PermProd
import HepLean.Tensors.Tree.NodeIdentities.PermContr
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
/-!
@ -72,6 +74,39 @@ lemma coMetric_symm : {Lorentz.coMetric | μ ν = Lorentz.coMetric | ν μ}ᵀ :
| (0 : Fin 2) => rfl
| (1 : Fin 2) => rfl
set_option maxRecDepth 20000 in
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
{(T1 | μ ν ⊗ T2 | μ ν) = (T2 | μ ν ⊗ T1 | μ ν)}ᵀ := by
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_comm _ _ _ _)))]
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
rw [perm_tensor_eq (perm_contr _ _)]
rw [perm_perm]
rw [perm_eq_id]
· rw [(contr_tensor_eq (contr_swap _ _))]
rw [perm_contr]
rw [perm_tensor_eq (contr_swap _ _)]
rw [perm_perm]
rw [perm_eq_id]
· rfl
· apply OverColor.Hom.ext
rfl
· apply OverColor.Hom.ext
ext x
exact Fin.elim0 x
lemma contr_rank_2_symm' {T1 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
{T2 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V} :
{(T1 | μ ν ⊗ T2 | μ ν) = (T2 | μ ν ⊗ T1 | μ ν)}ᵀ := by
rw [perm_tensor_eq contr_rank_2_symm]
rw [perm_perm]
rw [perm_eq_id]
apply OverColor.Hom.ext
ext x
exact Fin.elim0 x
set_option maxRecDepth 20000 in
/-- Contracting a rank-2 anti-symmetric tensor with a rank-2 symmetric tensor gives zero. -/
lemma antiSymm_contr_symm {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
@ -105,6 +140,15 @@ lemma antiSymm_contr_symm {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V
· apply OverColor.Hom.ext
rfl
lemma symm_contr_antiSymm {S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
{A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
{S | μ ν ⊗ A | μ ν}ᵀ.tensor = 0 := by
rw [contr_rank_2_symm']
rw [perm_tensor]
rw [antiSymm_contr_symm hA hs]
rfl
end Fermion
end