feat: Add rising and lower indices

This commit is contained in:
jstoobysmith 2024-07-30 16:07:16 -04:00
parent 57d08ffd40
commit 6d8ac0054d
4 changed files with 450 additions and 60 deletions

View file

@ -0,0 +1,171 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.Basic
import HepLean.SpaceTime.LorentzTensor.MulActionTensor
/-!
# Rising and Lowering of indices
We use the term `dualize` to describe the more general version of rising and lowering of indices.
In particular, rising and lowering indices corresponds taking the color of that index
to its dual.
-/
noncomputable section
open TensorProduct
variable {R : Type} [CommSemiring R]
namespace TensorStructure
variable (𝓣 : TensorStructure R)
variable {d : } {X Y Y' Z W C P : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
[Fintype C] [DecidableEq C] [Fintype P] [DecidableEq P]
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color}
{cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
variable {G H : Type} [Group G] [Group H] [MulActionTensor G 𝓣]
local infixl:101 " • " => 𝓣.rep
open MulActionTensor
/-!
## Properties of the unit
-/
/-! TODO: Move -/
lemma unit_lhs_eq (x : 𝓣.ColorModule μ) (y : 𝓣.ColorModule (𝓣.τ μ) ⊗[R] 𝓣.ColorModule μ) :
contrLeftAux (𝓣.contrDual μ) (x ⊗ₜ[R] y) =
(contrRightAux (𝓣.contrDual (𝓣.τ μ))) ((TensorProduct.comm R _ _) y
⊗ₜ[R] (𝓣.colorModuleCast (𝓣.τ_involutive μ).symm) x) := by
refine TensorProduct.induction_on y (by simp) ?_ (fun z1 z2 h1 h2 => ?_)
intro x1 x2
simp only [contrRightAux, LinearEquiv.refl_toLinearMap, comm_tmul, colorModuleCast,
Equiv.cast_symm, LinearEquiv.coe_mk, Equiv.cast_apply, LinearMap.coe_comp, LinearEquiv.coe_coe,
Function.comp_apply, assoc_tmul, map_tmul, LinearMap.id_coe, id_eq, contrDual_symm', cast_cast,
cast_eq, rid_tmul]
rfl
simp [LinearMap.map_add, add_tmul]
rw [← h1, ← h2, tmul_add, LinearMap.map_add]
@[simp]
lemma unit_lid : (contrRightAux (𝓣.contrDual (𝓣.τ μ))) ((TensorProduct.comm R _ _) (𝓣.unit μ)
⊗ₜ[R] (𝓣.colorModuleCast (𝓣.τ_involutive μ).symm) x) = x := by
have h1 := 𝓣.unit_rid μ x
rw [← unit_lhs_eq]
exact h1
/-!
## Properties of the metric
-/
@[simp]
lemma metric_cast (h : μ = ν) :
(TensorProduct.congr (𝓣.colorModuleCast h) (𝓣.colorModuleCast h)) (𝓣.metric μ) =
𝓣.metric ν := by
subst h
erw [congr_refl_refl]
simp only [LinearEquiv.refl_apply]
@[simp]
lemma metric_contrRight_unit (μ : 𝓣.Color) (x : 𝓣.ColorModule μ ) :
(contrRightAux (𝓣.contrDual μ)) (𝓣.metric μ ⊗ₜ[R]
((contrRightAux (𝓣.contrDual (𝓣.τ μ)))
(𝓣.metric (𝓣.τ μ) ⊗ₜ[R] (𝓣.colorModuleCast (𝓣.τ_involutive μ).symm x)))) = x := by
change (contrRightAux (𝓣.contrDual μ) ∘ₗ TensorProduct.map (LinearMap.id)
(contrRightAux (𝓣.contrDual (𝓣.τ μ)))) (𝓣.metric μ
⊗ₜ[R] 𝓣.metric (𝓣.τ μ) ⊗ₜ[R] (𝓣.colorModuleCast (𝓣.τ_involutive μ).symm x)) = _
rw [contrRightAux_comp]
simp
rw [𝓣.metric_dual]
simp only [unit_lid]
/-!
## Dualizing
-/
def dualizeSymm (μ : 𝓣.Color) : 𝓣.ColorModule (𝓣.τ μ) →ₗ[R] 𝓣.ColorModule μ :=
contrRightAux (𝓣.contrDual μ) ∘ₗ
TensorProduct.lTensorHomToHomLTensor R _ _ _ (𝓣.metric μ ⊗ₜ[R] LinearMap.id)
def dualizeFun (μ : 𝓣.Color) : 𝓣.ColorModule μ →ₗ[R] 𝓣.ColorModule (𝓣.τ μ) :=
𝓣.dualizeSymm (𝓣.τ μ) ∘ₗ (𝓣.colorModuleCast (𝓣.τ_involutive μ).symm).toLinearMap
def dualizeModule (μ : 𝓣.Color) : 𝓣.ColorModule μ ≃ₗ[R] 𝓣.ColorModule (𝓣.τ μ) := by
refine LinearEquiv.ofLinear (𝓣.dualizeFun μ) (𝓣.dualizeSymm μ) ?_ ?_
· apply LinearMap.ext
intro x
simp [dualizeFun, dualizeSymm, LinearMap.coe_comp, LinearEquiv.coe_coe,
Function.comp_apply, lTensorHomToHomLTensor_apply, LinearMap.id_coe, id_eq,
contrDual_symm_contrRightAux_apply_tmul, metric_cast]
· apply LinearMap.ext
intro x
simp only [dualizeSymm, dualizeFun, LinearMap.coe_comp, LinearEquiv.coe_coe,
Function.comp_apply, lTensorHomToHomLTensor_apply, LinearMap.id_coe, id_eq,
metric_contrRight_unit]
def dualizeAll : 𝓣.Tensor cX ≃ₗ[R] 𝓣.Tensor (𝓣.τ ∘ cX) := by
refine LinearEquiv.ofLinear
(PiTensorProduct.map (fun x => (𝓣.dualizeModule (cX x)).toLinearMap))
(PiTensorProduct.map (fun x => (𝓣.dualizeModule (cX x)).symm.toLinearMap)) ?_ ?_
all_goals
apply LinearMap.ext
refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by
intro a b hx a
simp [map_add, add_tmul, hx]
simp_all only [Function.comp_apply, LinearMap.coe_comp, LinearMap.id_coe, id_eq])
intro rx fx
simp
apply congrArg
change (PiTensorProduct.map _)
((PiTensorProduct.map _) ((PiTensorProduct.tprod R) fx)) = _
rw [PiTensorProduct.map_tprod, PiTensorProduct.map_tprod]
apply congrArg
simp
lemma dualize_cond (e : C ⊕ P ≃ X) :
cX = Sum.elim (cX ∘ e ∘ Sum.inl) (cX ∘ e ∘ Sum.inr) ∘ e.symm := by
rw [Equiv.eq_comp_symm]
funext x
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl
lemma dualize_cond' (e : C ⊕ P ≃ X) :
Sum.elim (𝓣.τ ∘ cX ∘ ⇑e ∘ Sum.inl) (cX ∘ ⇑e ∘ Sum.inr) =
(Sum.elim (𝓣.τ ∘ cX ∘ ⇑e ∘ Sum.inl) (cX ∘ ⇑e ∘ Sum.inr) ∘ ⇑e.symm) ∘ ⇑e := by
funext x
match x with
| Sum.inl x => simp
| Sum.inr x => simp
/-! TODO: Show that `dualize` is equivariant with respect to the group action. -/
def dualize (e : C ⊕ P ≃ X) : 𝓣.Tensor cX ≃ₗ[R]
𝓣.Tensor (Sum.elim (𝓣.τ ∘ cX ∘ e ∘ Sum.inl) (cX ∘ e ∘ Sum.inr) ∘ e.symm) :=
𝓣.mapIso e.symm (𝓣.dualize_cond e) ≪≫ₗ
(𝓣.tensoratorEquiv _ _).symm ≪≫ₗ
TensorProduct.congr 𝓣.dualizeAll (LinearEquiv.refl _ _) ≪≫ₗ
(𝓣.tensoratorEquiv _ _) ≪≫ₗ
𝓣.mapIso e (𝓣.dualize_cond' e)
end TensorStructure
end